Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Practical Computing For Beginners
Download Practical Computing For Beginners full books in PDF, epub, and Kindle. Read online Practical Computing For Beginners ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Practical Computing for Biologists by : Steven H.D. Haddock
Download or read book Practical Computing for Biologists written by Steven H.D. Haddock and published by Sinauer. This book was released on 2011-04-22 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Computing for Biologists shows you how to use many freely available computing tools to work more powerfully and effectively. The book was born out of the authors' own experience in developing tools for their research and helping other biologists with their computational problems. Many of the techniques are relevant to molecular bioinformatics but the scope of the book is much broader, covering topics and techniques that are applicable to a range of scientific endeavours. Twenty-two chapters organized into six parts address the following topics (and more; see Contents): • Searching with regular expressions • The Unix command line • Python programming and debugging • Creating and editing graphics • Databases • Performing analyses on remote servers • Working with electronics While the main narrative focuses on Mac OS X, most of the concepts and examples apply to any operating system. Where there are differences for Windows and Linux users, parallel instructions are provided in the margin and in an appendix. The book is designed to be used as a self-guided resource for researchers, a companion book in a course, or as a primary textbook. Practical Computing for Biologists will free you from the most frustrating and time-consuming aspects of data processing so you can focus on the pleasures of scientific inquiry.
Book Synopsis Practical Computing For Beginners by :
Download or read book Practical Computing For Beginners written by and published by Rex Bookstore, Inc.. This book was released on with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Practical Programming by : Paul Gries
Download or read book Practical Programming written by Paul Gries and published by Pragmatic Bookshelf. This book was released on 2017-12-06 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classroom-tested by tens of thousands of students, this new edition of the bestselling intro to programming book is for anyone who wants to understand computer science. Learn about design, algorithms, testing, and debugging. Discover the fundamentals of programming with Python 3.6--a language that's used in millions of devices. Write programs to solve real-world problems, and come away with everything you need to produce quality code. This edition has been updated to use the new language features in Python 3.6.
Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard
Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Book Synopsis Practical Computer Vision Applications Using Deep Learning with CNNs by : Ahmed Fawzy Gad
Download or read book Practical Computer Vision Applications Using Deep Learning with CNNs written by Ahmed Fawzy Gad and published by Apress. This book was released on 2018-12-05 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset. Along the way you will cover artificial neural networks (ANNs), building one from scratch in Python, before optimizing it using genetic algorithms. For automating the process, the book highlights the limitations of traditional hand-crafted features for computer vision and why the CNN deep-learning model is the state-of-art solution. CNNs are discussed from scratch to demonstrate how they are different and more efficient than the fully connected ANN (FCNN). You will implement a CNN in Python to give you a full understanding of the model. After consolidating the basics, you will use TensorFlow to build a practical image-recognition model that you will deploy to a web server using Flask, making it accessible over the Internet. Using Kivy and NumPy, you will create cross-platform data science applications with low overheads. This book will help you apply deep learning and computer vision concepts from scratch, step-by-step from conception to production. What You Will Learn Understand how ANNs and CNNs work Create computer vision applications and CNNs from scratch using PythonFollow a deep learning project from conception to production using TensorFlowUse NumPy with Kivy to build cross-platform data science applications Who This Book Is ForData scientists, machine learning and deep learning engineers, software developers.
Book Synopsis Illustrating BASIC by : Donald Alcock
Download or read book Illustrating BASIC written by Donald Alcock and published by Cambridge University Press. This book was released on 1977 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a popular computer language called BASIC and explains how to write simple programs in it.
Book Synopsis Computing Skills for Biologists by : Stefano Allesina
Download or read book Computing Skills for Biologists written by Stefano Allesina and published by Princeton University Press. This book was released on 2019-01-15 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to key computing skills for biologists While biological data continues to grow exponentially in size and quality, many of today’s biologists are not trained adequately in the computing skills necessary for leveraging this information deluge. In Computing Skills for Biologists, Stefano Allesina and Madlen Wilmes present a valuable toolbox for the effective analysis of biological data. Based on the authors’ experiences teaching scientific computing at the University of Chicago, this textbook emphasizes the automation of repetitive tasks and the construction of pipelines for data organization, analysis, visualization, and publication. Stressing practice rather than theory, the book’s examples and exercises are drawn from actual biological data and solve cogent problems spanning the entire breadth of biological disciplines, including ecology, genetics, microbiology, and molecular biology. Beginners will benefit from the many examples explained step-by-step, while more seasoned researchers will learn how to combine tools to make biological data analysis robust and reproducible. The book uses free software and code that can be run on any platform. Computing Skills for Biologists is ideal for scientists wanting to improve their technical skills and instructors looking to teach the main computing tools essential for biology research in the twenty-first century. Excellent resource for acquiring comprehensive computing skills Both novice and experienced scientists will increase efficiency by building automated and reproducible pipelines for biological data analysis Code examples based on published data spanning the breadth of biological disciplines Detailed solutions provided for exercises in each chapter Extensive companion website
Book Synopsis Practical Deep Learning by : Ronald T. Kneusel
Download or read book Practical Deep Learning written by Ronald T. Kneusel and published by No Starch Press. This book was released on 2021-02-23 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Deep Learning teaches total beginners how to build the datasets and models needed to train neural networks for your own DL projects. If you’ve been curious about machine learning but didn’t know where to start, this is the book you’ve been waiting for. Focusing on the subfield of machine learning known as deep learning, it explains core concepts and gives you the foundation you need to start building your own models. Rather than simply outlining recipes for using existing toolkits, Practical Deep Learning teaches you the why of deep learning and will inspire you to explore further. All you need is basic familiarity with computer programming and high school math—the book will cover the rest. After an introduction to Python, you’ll move through key topics like how to build a good training dataset, work with the scikit-learn and Keras libraries, and evaluate your models’ performance. You’ll also learn: How to use classic machine learning models like k-Nearest Neighbors, Random Forests, and Support Vector Machines How neural networks work and how they’re trained How to use convolutional neural networks How to develop a successful deep learning model from scratch You’ll conduct experiments along the way, building to a final case study that incorporates everything you’ve learned. The perfect introduction to this dynamic, ever-expanding field, Practical Deep Learning will give you the skills and confidence to dive into your own machine learning projects.
Book Synopsis Practical Computer Vision with SimpleCV by : Kurt Demaagd
Download or read book Practical Computer Vision with SimpleCV written by Kurt Demaagd and published by "O'Reilly Media, Inc.". This book was released on 2012 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to build your own computer vision (CV) applications quickly and easily with SimpleCV, an open source framework written in Python. Through examples of real-world applications, this hands-on guide introduces you to basic CV techniques for collecting, processing, and analyzing streaming digital images. You'll then learn how to apply these methods with SimpleCV, using sample Python code. All you need to get started is a Windows, Mac, or Linux system, and a willingness to put CV to work in a variety of ways. Programming experience is optional. Capture images from several sources, including webcams, smartphones, and Kinect Filter image input so your application processes only necessary information Manipulate images by performing basic arithmetic on pixel values Use feature detection techniques to focus on interesting parts of an image Work with several features in a single image, using the NumPy and SciPy Python libraries Learn about optical flow to identify objects that change between two image frames Use SimpleCV's command line and code editor to run examples and test techniques
Book Synopsis The Practical Handbook of Internet Computing by : Munindar P. Singh
Download or read book The Practical Handbook of Internet Computing written by Munindar P. Singh and published by CRC Press. This book was released on 2004-09-29 with total page 1144 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Practical Handbook of Internet Computing analyzes a broad array of technologies and concerns related to the Internet, including corporate intranets. Fresh and insightful articles by recognized experts address the key challenges facing Internet users, designers, integrators, and policymakers. In addition to discussing major applications, it also
Book Synopsis What Can Be Computed? by : John MacCormick
Download or read book What Can Be Computed? written by John MacCormick and published by Princeton University Press. This book was released on 2018-05-01 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com
Book Synopsis First Step to Quantum Computing: A Practical Guide for Beginners by : Javad Shabani
Download or read book First Step to Quantum Computing: A Practical Guide for Beginners written by Javad Shabani and published by World Scientific Publishing Company. This book was released on 2023-01-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum information is a young and evolving field. This compendium introduces quantum information in a comprehensive self-contained guide without assuming a wealth of knowledge prior to reading.The volume highlights intuition on counterintuitive topics such as quantum mechanics, basic mathematical tools and calculations involving linear algebra, and applies these concepts to quantum information with guided problems and coding exercises.This applied guide largely benefits mid-level undergraduates and perhaps motivated high schoolers.
Book Synopsis Learning SciPy for Numerical and Scientific Computing - Second Edition by : Sergio J. Rojas G.
Download or read book Learning SciPy for Numerical and Scientific Computing - Second Edition written by Sergio J. Rojas G. and published by Packt Publishing Ltd. This book was released on 2015-02-26 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book targets programmers and scientists who have basic Python knowledge and who are keen to perform scientific and numerical computations with SciPy.
Book Synopsis Practical Programming by : Paul Gries
Download or read book Practical Programming written by Paul Gries and published by . This book was released on 2013 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Previous edition: published as by Jennifer Campbell ... [et al]. 2009.
Book Synopsis Practical Machine Learning for Computer Vision by : Valliappa Lakshmanan
Download or read book Practical Machine Learning for Computer Vision written by Valliappa Lakshmanan and published by "O'Reilly Media, Inc.". This book was released on 2021-07-21 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
Book Synopsis Practical Scientific Computing by : Muhammad Ali
Download or read book Practical Scientific Computing written by Muhammad Ali and published by Elsevier. This book was released on 2011-02-26 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific computing is about developing mathematical models, numerical methods and computer implementations to study and solve real problems in science, engineering, business and even social sciences. Mathematical modelling requires deep understanding of classical numerical methods. This essential guide provides the reader with sufficient foundations in these areas to venture into more advanced texts.The first section of the book presents numEclipse, an open source tool for numerical computing based on the notion of MATLAB®. numEclipse is implemented as a plug-in for Eclipse, a leading integrated development environment for Java programming. The second section studies the classical methods of numerical analysis. Numerical algorithms and their implementations are presented using numEclipse.Practical scientific computing is an invaluable reference for undergraduate engineering, science and mathematics students taking numerical methods courses. It will also be a useful handbook for postgraduate researchers and professionals whose work involves scientific computing. - An invaluable reference for undergraduate engineering, science and mathematics students taking numerical methods courses - Guides the reader through developing a deep understanding of classical numerical methods - Features a comprehensive analysis of numEclipse including numerical algorithms and their implementations
Book Synopsis Practical Deep Learning for Cloud, Mobile, and Edge by : Anirudh Koul
Download or read book Practical Deep Learning for Cloud, Mobile, and Edge written by Anirudh Koul and published by "O'Reilly Media, Inc.". This book was released on 2019-10-14 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users