Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Periodic And Asymptotic Solutions
Download Periodic And Asymptotic Solutions full books in PDF, epub, and Kindle. Read online Periodic And Asymptotic Solutions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Mathematical Modeling of Random and Deterministic Phenomena by : Solym Mawaki Manou-Abi
Download or read book Mathematical Modeling of Random and Deterministic Phenomena written by Solym Mawaki Manou-Abi and published by John Wiley & Sons. This book was released on 2020-04-28 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights mathematical research interests that appear in real life, such as the study and modeling of random and deterministic phenomena. As such, it provides current research in mathematics, with applications in biological and environmental sciences, ecology, epidemiology and social perspectives. The chapters can be read independently of each other, with dedicated references specific to each chapter. The book is organized in two main parts. The first is devoted to some advanced mathematical problems regarding epidemic models; predictions of biomass; space-time modeling of extreme rainfall; modeling with the piecewise deterministic Markov process; optimal control problems; evolution equations in a periodic environment; and the analysis of the heat equation. The second is devoted to a modelization with interdisciplinarity in ecological, socio-economic, epistemological, demographic and social problems. Mathematical Modeling of Random and Deterministic Phenomena is aimed at expert readers, young researchers, plus graduate and advanced undergraduate students who are interested in probability, statistics, modeling and mathematical analysis.
Book Synopsis New Methods of Celestial Mechanics: Periodic and asymptotic solutions by : Henri Poincaré
Download or read book New Methods of Celestial Mechanics: Periodic and asymptotic solutions written by Henri Poincaré and published by . This book was released on 1993 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Almost Periodicity, Chaos, and Asymptotic Equivalence by : Marat Akhmet
Download or read book Almost Periodicity, Chaos, and Asymptotic Equivalence written by Marat Akhmet and published by Springer. This book was released on 2019-06-20 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The central subject of this book is Almost Periodic Oscillations, the most common oscillations in applications and the most intricate for mathematical analysis. Prof. Akhmet's lucid and rigorous examination proves these oscillations are a "regular" component of chaotic attractors. The book focuses on almost periodic functions, first of all, as Stable (asymptotically) solutions of differential equations of different types, presumably discontinuous; and, secondly, as non-isolated oscillations in chaotic sets. Finally, the author proves the existence of Almost Periodic Oscillations (asymptotic and bi-asymptotic) by asymptotic equivalence between systems. The book brings readers' attention to contemporary methods for considering oscillations as well as to methods with strong potential for study of chaos in the future. Providing three powerful instruments for mathematical research of oscillations where dynamics are observable and applied, the book is ideal for engineers as well as specialists in electronics, computer sciences, robotics, neural networks, artificial networks, and biology. Distinctively combines results and methods of the theory of differential equations with thorough investigation of chaotic dynamics with almost periodic ingredients; Provides all necessary mathematical basics in their most developed form, negating the need for any additional sources for readers to start work in the area; Presents a unique method of investigation of discontinuous almost periodic solutions in its unified form, employed to differential equations with different types of discontinuity; Develops the equivalence method to its ultimate effective state such that most important theoretical problems and practical applications can be analyzed by the method.
Book Synopsis Evolution Equations by : Aleksandr Andreevich Pankov
Download or read book Evolution Equations written by Aleksandr Andreevich Pankov and published by . This book was released on 2018 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of Advances in Evolution Equations is dedicated to the memory of Professor Vasilii Vasilievich Zhikov, an outstanding Russian mathematician. Zhikov's scientific interest ranged from almost periodic differential equations and topological dynamics to spectral theory of elliptic operators, qualitative theory of parabolic equations, calculus of variations, homogenization, and hydrodynamics, to name a few. Many of his results are now classical.
Book Synopsis Periodic Differential Equations by : F. M. Arscott
Download or read book Periodic Differential Equations written by F. M. Arscott and published by Elsevier. This book was released on 2014-05-16 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Periodic Differential Equations: An Introduction to Mathieu, Lamé, and Allied Functions covers the fundamental problems and techniques of solution of periodic differential equations. This book is composed of 10 chapters that present important equations and the special functions they generate, ranging from Mathieu's equation to the intractable ellipsoidal wave equation. This book starts with a survey of the main problems related to the formation of periodic differential equations. The subsequent chapters deal with the general theory of Mathieu's equation, Mathieu functions of integral order, and the principles of asymptotic expansions. These topics are followed by discussions of the stable and unstable solutions of Mathieu's general equation; general properties and characteristic exponent of Hill's equation; and the general nature and solutions of the spheroidal wave equation. The concluding chapters explore the polynomials, orthogonality properties, and integral relations of Lamé's equation. These chapters also describe the wave functions and solutions of the ellipsoidal wave equation. This book will prove useful to pure and applied mathematicians and functional analysis.
Book Synopsis A Treatise on the Analytical Dynamics of Particles and Rigid Bodies by : Edmund Taylor Whittaker
Download or read book A Treatise on the Analytical Dynamics of Particles and Rigid Bodies written by Edmund Taylor Whittaker and published by . This book was released on 1927 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Stability & Periodic Solutions of Ordinary & Functional Differential Equations by : T. A. Burton
Download or read book Stability & Periodic Solutions of Ordinary & Functional Differential Equations written by T. A. Burton and published by Courier Corporation. This book was released on 2014-06-24 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book's discussion of a broad class of differential equations includes linear differential and integrodifferential equations, fixed-point theory, and the basic stability and periodicity theory for nonlinear ordinary and functional differential equations.
Book Synopsis Self-Similarity and Beyond by : P.L. Sachdev
Download or read book Self-Similarity and Beyond written by P.L. Sachdev and published by CRC Press. This book was released on 2019-06-13 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinearity plays a major role in the understanding of most physical, chemical, biological, and engineering sciences. Nonlinear problems fascinate scientists and engineers, but often elude exact treatment. However elusive they may be, the solutions do exist-if only one perseveres in seeking them out. Self-Similarity and Beyond presents
Book Synopsis Nonlinear Parabolic and Elliptic Equations by : C.V. Pao
Download or read book Nonlinear Parabolic and Elliptic Equations written by C.V. Pao and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to the growing use of reaction diffusion problems in many fields, this monograph gives a systematic treatment of a class of nonlinear parabolic and elliptic differential equations and their applications these problems. It is an important reference for mathematicians and engineers, as well as a practical text for graduate students.
Book Synopsis Partial Differential Equations and Boundary-Value Problems with Applications by : Mark A. Pinsky
Download or read book Partial Differential Equations and Boundary-Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Book Synopsis Impulsive Differential Equations by : Dimit?r Ba?nov
Download or read book Impulsive Differential Equations written by Dimit?r Ba?nov and published by World Scientific. This book was released on 1995 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: The question of the presence of various asymptotic properties of the solutions of ordinary differential equations arises when solving various practical problems. The investigation of these questions is still more important for impulsive differential equations which have a wider field of application than the ordinary ones.The results obtained by treating the asymptotic properties of the solutions of impulsive differential equations can be found in numerous separate articles. The systematized exposition of these results in a separate book will satisfy the growing interest in the problems related to the asymptotic properties of the solutions of impulsive differential equations and their applications.
Book Synopsis Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations by : Anatoli? Mikha?lovich Samo?lenko
Download or read book Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations written by Anatoli? Mikha?lovich Samo?lenko and published by World Scientific. This book was released on 2011 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on the random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematical disciplines: random processes and ordinary differential equations. Consequently, the sources of these methods come both from the theory of random processes and from the classic theory of differential equations. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations. For this purpose, both asymptotic and qualitative methods which appeared in the classical theory of differential equations and nonlinear mechanics are developed.
Book Synopsis Nonlinear Diffusion Equations and Their Equilibrium States I by : W.-M. Ni
Download or read book Nonlinear Diffusion Equations and Their Equilibrium States I written by W.-M. Ni and published by Springer. This book was released on 1988-06-24 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years considerable interest has been focused on nonlinear diffu sion problems, the archetypical equation for these being Ut = D.u + f(u). Here D. denotes the n-dimensional Laplacian, the solution u = u(x, t) is defined over some space-time domain of the form n x [O,T], and f(u) is a given real function whose form is determined by various physical and mathematical applications. These applications have become more varied and widespread as problem after problem has been shown to lead to an equation of this type or to its time-independent counterpart, the elliptic equation of equilibrium D.u + f(u) = o. Particular cases arise, for example, in population genetics, the physics of nu clear stability, phase transitions between liquids and gases, flows in porous media, the Lend-Emden equation of astrophysics, various simplified com bustion models, and in determining metrics which realize given scalar or Gaussian curvatures. In the latter direction, for example, the problem of finding conformal metrics with prescribed curvature leads to a ground state problem involving critical exponents. Thus not only analysts, but geome ters as well, can find common ground in the present work. The corresponding mathematical problem is to determine how the struc ture of the nonlinear function f(u) influences the behavior of the solution.
Book Synopsis Applied Asymptotic Analysis by : Peter David Miller
Download or read book Applied Asymptotic Analysis written by Peter David Miller and published by American Mathematical Soc.. This book was released on 2006 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a survey of asymptotic methods set in the current applied research context of wave propagation. It stresses rigorous analysis in addition to formal manipulations. Asymptotic expansions developed in the text are justified rigorously, and students are shown how to obtain solid error estimates for asymptotic formulae. The book relates examples and exercises to subjects of current research interest, such as the problem of locating the zeros of Taylor polynomials of entirenonvanishing functions and the problem of counting integer lattice points in subsets of the plane with various geometrical properties of the boundary. The book is intended for a beginning graduate course on asymptotic analysis in applied mathematics and is aimed at students of pure and appliedmathematics as well as science and engineering. The basic prerequisite is a background in differential equations, linear algebra, advanced calculus, and complex variables at the level of introductory undergraduate courses on these subjects. The book is ideally suited to the needs of a graduate student who, on the one hand, wants to learn basic applied mathematics, and on the other, wants to understand what is needed to make the various arguments rigorous. Down here in the Village, this is knownas the Courant point of view!! --Percy Deift, Courant Institute, New York Peter D. Miller is an associate professor of mathematics at the University of Michigan at Ann Arbor. He earned a Ph.D. in Applied Mathematics from the University of Arizona and has held positions at the Australian NationalUniversity (Canberra) and Monash University (Melbourne). His current research interests lie in singular limits for integrable systems.
Book Synopsis Asymptotic Behaviour of Solutions of Evolutionary Equations by : M. I. Vishik
Download or read book Asymptotic Behaviour of Solutions of Evolutionary Equations written by M. I. Vishik and published by Cambridge University Press. This book was released on 1992 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: A short but sweet summary of globally asymptotic solutions of evolutionary equations.
Book Synopsis Asymptotic Behavior and Stability Problems in Ordinary Differential Equations by : Lamberto Cesari
Download or read book Asymptotic Behavior and Stability Problems in Ordinary Differential Equations written by Lamberto Cesari and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matic controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields. The body of research now accumulated is overwhelming, and many books and reports have appeared on one or another of the multiple aspects of the new line of research which some authors call" qualitative theory of differential equations". The purpose of the present volume is to present many of the view points and questions in a readable short report for which completeness is not claimed. The bibliographical notes in each section are intended to be a guide to more detailed expositions and to the original papers. Some traditional topics such as the Sturm comparison theory have been omitted. Also excluded were all those papers, dealing with special differential equations motivated by and intended for the applications.
Book Synopsis Scalar Conservation Laws by : Giuseppe Maria Coclite
Download or read book Scalar Conservation Laws written by Giuseppe Maria Coclite and published by Springer Nature. This book was released on with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: