Data Mining and Knowledge Discovery with Evolutionary Algorithms

Download Data Mining and Knowledge Discovery with Evolutionary Algorithms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662049236
Total Pages : 272 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Knowledge Discovery with Evolutionary Algorithms by : Alex A. Freitas

Download or read book Data Mining and Knowledge Discovery with Evolutionary Algorithms written by Alex A. Freitas and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics

Pattern Mining with Evolutionary Algorithms

Download Pattern Mining with Evolutionary Algorithms PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319338587
Total Pages : 199 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Pattern Mining with Evolutionary Algorithms by : Sebastián Ventura

Download or read book Pattern Mining with Evolutionary Algorithms written by Sebastián Ventura and published by Springer. This book was released on 2016-06-13 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the field of pattern mining with evolutionary algorithms. To do so, it covers formal definitions about patterns, patterns mining, type of patterns and the usefulness of patterns in the knowledge discovery process. As it is described within the book, the discovery process suffers from both high runtime and memory requirements, especially when high dimensional datasets are analyzed. To solve this issue, many pruning strategies have been developed. Nevertheless, with the growing interest in the storage of information, more and more datasets comprise such a dimensionality that the discovery of interesting patterns becomes a challenging process. In this regard, the use of evolutionary algorithms for mining pattern enables the computation capacity to be reduced, providing sufficiently good solutions. This book offers a survey on evolutionary computation with particular emphasis on genetic algorithms and genetic programming. Also included is an analysis of the set of quality measures most widely used in the field of pattern mining with evolutionary algorithms. This book serves as a review of the most important evolutionary algorithms for pattern mining. It considers the analysis of different algorithms for mining different type of patterns and relationships between patterns, such as frequent patterns, infrequent patterns, patterns defined in a continuous domain, or even positive and negative patterns. A completely new problem in the pattern mining field, mining of exceptional relationships between patterns, is discussed. In this problem the goal is to identify patterns which distribution is exceptionally different from the distribution in the complete set of data records. Finally, the book deals with the subgroup discovery task, a method to identify a subgroup of interesting patterns that is related to a dependent variable or target attribute. This subgroup of patterns satisfies two essential conditions: interpretability and interestingness.

Automating the Design of Data Mining Algorithms

Download Automating the Design of Data Mining Algorithms PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783642261251
Total Pages : 0 pages
Book Rating : 4.2/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Automating the Design of Data Mining Algorithms by : Gisele L. Pappa

Download or read book Automating the Design of Data Mining Algorithms written by Gisele L. Pappa and published by Springer. This book was released on 2012-03-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.

Handbook of Research on Applications and Implementations of Machine Learning Techniques

Download Handbook of Research on Applications and Implementations of Machine Learning Techniques PDF Online Free

Author :
Publisher : IGI Global, Engineering Science Reference
ISBN 13 : 9781522599029
Total Pages : 0 pages
Book Rating : 4.5/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Research on Applications and Implementations of Machine Learning Techniques by : Sathiyamoorthi Velayutham

Download or read book Handbook of Research on Applications and Implementations of Machine Learning Techniques written by Sathiyamoorthi Velayutham and published by IGI Global, Engineering Science Reference. This book was released on 2019-07 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book examines the practical applications and implementation of various machine learning techniques in various fields such as agriculture, medical, image processing, and networking"--

Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration

Download Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0121942759
Total Pages : 554 pages
Book Rating : 4.1/5 (219 download)

DOWNLOAD NOW!


Book Synopsis Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration by : Earl Cox

Download or read book Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration written by Earl Cox and published by Academic Press. This book was released on 2005-02 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations and ideas -- Principal model types -- Approaches to model building -- Fundamental concepts of fuzzy logic -- Fundamental concepts of fuzzy systems -- Fuzzy SQL and intelligent queries -- Fuzzy clustering -- Fuzzy rule induction -- Fundamental concepts of genetic algorithms -- Genetic resource scheduling optimization -- Genetic tuning of fuzzy models.

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics

Download Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 354071782X
Total Pages : 311 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics by : Elena Marchiori

Download or read book Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics written by Elena Marchiori and published by Springer Science & Business Media. This book was released on 2007-04-02 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2007, held in Valencia, Spain, April 2007. Coverage brings together experts in computer science with experts in bioinformatics and the biological sciences. It presents contributions on fundamental and theoretical issues along with papers dealing with different applications areas.

Advances in Evolutionary Computing

Download Advances in Evolutionary Computing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642189652
Total Pages : 1001 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Advances in Evolutionary Computing by : Ashish Ghosh

Download or read book Advances in Evolutionary Computing written by Ashish Ghosh and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1001 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.

Periodic Pattern Mining

Download Periodic Pattern Mining PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811639647
Total Pages : 263 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Periodic Pattern Mining by : R. Uday Kiran

Download or read book Periodic Pattern Mining written by R. Uday Kiran and published by Springer Nature. This book was released on 2021-10-29 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the field of periodic pattern mining, reviews state-of-the-art techniques, discusses recent advances, and reviews open-source software. Periodic pattern mining is a popular and emerging research area in the field of data mining. It involves discovering all regularly occurring patterns in temporal databases. One of the major applications of periodic pattern mining is the analysis of customer transaction databases to discover sets of items that have been regularly purchased by customers. Discovering such patterns has several implications for understanding the behavior of customers. Since the first work on periodic pattern mining, numerous studies have been published and great advances have been made in this field. The book consists of three main parts: introduction, algorithms, and applications. The first chapter is an introduction to pattern mining and periodic pattern mining. The concepts of periodicity, periodic support, search space exploration techniques, and pruning strategies are discussed. The main types of algorithms are also presented such as periodic-frequent pattern growth, partial periodic pattern-growth, and periodic high-utility itemset mining algorithm. Challenges and research opportunities are reviewed. The chapters that follow present state-of-the-art techniques for discovering periodic patterns in (1) transactional databases, (2) temporal databases, (3) quantitative temporal databases, and (4) big data. Then, the theory on concise representations of periodic patterns is presented, as well as hiding sensitive information using privacy-preserving data mining techniques. The book concludes with several applications of periodic pattern mining, including applications in air pollution data analytics, accident data analytics, and traffic congestion analytics.

Supervised Descriptive Pattern Mining

Download Supervised Descriptive Pattern Mining PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319981404
Total Pages : 191 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Supervised Descriptive Pattern Mining by : Sebastián Ventura

Download or read book Supervised Descriptive Pattern Mining written by Sebastián Ventura and published by Springer. This book was released on 2018-10-05 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general and comprehensible overview of supervised descriptive pattern mining, considering classic algorithms and those based on heuristics. It provides some formal definitions and a general idea about patterns, pattern mining, the usefulness of patterns in the knowledge discovery process, as well as a brief summary on the tasks related to supervised descriptive pattern mining. It also includes a detailed description on the tasks usually grouped under the term supervised descriptive pattern mining: subgroups discovery, contrast sets and emerging patterns. Additionally, this book includes two tasks, class association rules and exceptional models, that are also considered within this field. A major feature of this book is that it provides a general overview (formal definitions and algorithms) of all the tasks included under the term supervised descriptive pattern mining. It considers the analysis of different algorithms either based on heuristics or based on exhaustive search methodologies for any of these tasks. This book also illustrates how important these techniques are in different fields, a set of real-world applications are described. Last but not least, some related tasks are also considered and analyzed. The final aim of this book is to provide a general review of the supervised descriptive pattern mining field, describing its tasks, its algorithms, its applications, and related tasks (those that share some common features). This book targets developers, engineers and computer scientists aiming to apply classic and heuristic-based algorithms to solve different kinds of pattern mining problems and apply them to real issues. Students and researchers working in this field, can use this comprehensive book (which includes its methods and tools) as a secondary textbook.

Introduction to Algorithms for Data Mining and Machine Learning

Download Introduction to Algorithms for Data Mining and Machine Learning PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128172177
Total Pages : 190 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Algorithms for Data Mining and Machine Learning by : Xin-She Yang

Download or read book Introduction to Algorithms for Data Mining and Machine Learning written by Xin-She Yang and published by Academic Press. This book was released on 2019-06-17 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages

Genetic and Evolutionary Computation--GECCO 2003

Download Genetic and Evolutionary Computation--GECCO 2003 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540406026
Total Pages : 1294 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Genetic and Evolutionary Computation--GECCO 2003 by : Erick Cantú-Paz

Download or read book Genetic and Evolutionary Computation--GECCO 2003 written by Erick Cantú-Paz and published by Springer Science & Business Media. This book was released on 2003-07-08 with total page 1294 pages. Available in PDF, EPUB and Kindle. Book excerpt: The set LNCS 2723 and LNCS 2724 constitutes the refereed proceedings of the Genetic and Evolutionaty Computation Conference, GECCO 2003, held in Chicago, IL, USA in July 2003. The 193 revised full papers and 93 poster papers presented were carefully reviewed and selected from a total of 417 submissions. The papers are organized in topical sections on a-life adaptive behavior, agents, and ant colony optimization; artificial immune systems; coevolution; DNA, molecular, and quantum computing; evolvable hardware; evolutionary robotics; evolution strategies and evolutionary programming; evolutionary sheduling routing; genetic algorithms; genetic programming; learning classifier systems; real-world applications; and search based softare engineering.

Data-Driven Evolutionary Optimization

Download Data-Driven Evolutionary Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030746402
Total Pages : 393 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Evolutionary Optimization by : Yaochu Jin

Download or read book Data-Driven Evolutionary Optimization written by Yaochu Jin and published by Springer Nature. This book was released on 2021-06-28 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.

Data Mining: A Heuristic Approach

Download Data Mining: A Heuristic Approach PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1591400112
Total Pages : 310 pages
Book Rating : 4.5/5 (914 download)

DOWNLOAD NOW!


Book Synopsis Data Mining: A Heuristic Approach by : Abbass, Hussein A.

Download or read book Data Mining: A Heuristic Approach written by Abbass, Hussein A. and published by IGI Global. This book was released on 2001-07-01 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real life problems are known to be messy, dynamic and multi-objective, and involve high levels of uncertainty and constraints. Because traditional problem-solving methods are no longer capable of handling this level of complexity, heuristic search methods have attracted increasing attention in recent years for solving such problems. Inspired by nature, biology, statistical mechanics, physics and neuroscience, heuristics techniques are used to solve many problems where traditional methods have failed. Data Mining: A Heuristic Approach will be a repository for the applications of these techniques in the area of data mining.

Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques

Download Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1615208100
Total Pages : 282 pages
Book Rating : 4.6/5 (152 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques by : Chis, Monica

Download or read book Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques written by Chis, Monica and published by IGI Global. This book was released on 2010-06-30 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques lays the foundation for the successful integration of evolutionary computation into software engineering. It surveys techniques ranging from genetic algorithms, to swarm optimization theory, to ant colony optimization, demonstrating their uses and capabilities. These techniques are applied to aspects of software engineering such as software testing, quality assessment, reliability assessment, and fault prediction models, among others, to providing researchers, scholars and students with the knowledge needed to expand this burgeoning application.

Evolutionary Algorithms

Download Evolutionary Algorithms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1848218044
Total Pages : 258 pages
Book Rating : 4.8/5 (482 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Algorithms by : Alain Petrowski

Download or read book Evolutionary Algorithms written by Alain Petrowski and published by John Wiley & Sons. This book was released on 2017-04-24 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary algorithms are bio-inspired algorithms based on Darwin’s theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms. Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.

Meta-heuristic and Evolutionary Algorithms for Engineering Optimization

Download Meta-heuristic and Evolutionary Algorithms for Engineering Optimization PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119386993
Total Pages : 306 pages
Book Rating : 4.1/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Meta-heuristic and Evolutionary Algorithms for Engineering Optimization by : Omid Bozorg-Haddad

Download or read book Meta-heuristic and Evolutionary Algorithms for Engineering Optimization written by Omid Bozorg-Haddad and published by John Wiley & Sons. This book was released on 2017-10-09 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique. Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm— and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book: Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; Relates optimization algorithms to engineering problems employing a unifying approach. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science. OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran. MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran. HUGO A. LOÁICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.

Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications

Download Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1522507892
Total Pages : 1810 pages
Book Rating : 4.5/5 (225 download)

DOWNLOAD NOW!


Book Synopsis Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications by : Management Association, Information Resources

Download or read book Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2016-07-26 with total page 1810 pages. Available in PDF, EPUB and Kindle. Book excerpt: As technology continues to become more sophisticated, mimicking natural processes and phenomena also becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for man-made computing to mirror the natural processes and systems that have existed for centuries. Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications takes an interdisciplinary approach to the topic of natural computing, including emerging technologies being developed for the purpose of simulating natural phenomena, applications across industries, and the future outlook of biologically and nature-inspired technologies. Emphasizing critical research in a comprehensive multi-volume set, this publication is designed for use by IT professionals, researchers, and graduate students studying intelligent computing.