Orthogonal Polynomials for Engineers and Physicists

Download Orthogonal Polynomials for Engineers and Physicists PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 290 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Orthogonal Polynomials for Engineers and Physicists by : Petr Beckmann

Download or read book Orthogonal Polynomials for Engineers and Physicists written by Petr Beckmann and published by . This book was released on 1973 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Classical and Quantum Orthogonal Polynomials in One Variable

Download Classical and Quantum Orthogonal Polynomials in One Variable PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521782012
Total Pages : 748 pages
Book Rating : 4.7/5 (82 download)

DOWNLOAD NOW!


Book Synopsis Classical and Quantum Orthogonal Polynomials in One Variable by : Mourad Ismail

Download or read book Classical and Quantum Orthogonal Polynomials in One Variable written by Mourad Ismail and published by Cambridge University Press. This book was released on 2005-11-21 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.

Special Functions and Orthogonal Polynomials

Download Special Functions and Orthogonal Polynomials PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 1411666909
Total Pages : 312 pages
Book Rating : 4.4/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Special Functions and Orthogonal Polynomials by : Refaat El Attar

Download or read book Special Functions and Orthogonal Polynomials written by Refaat El Attar and published by Lulu.com. This book was released on 2006 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: (308 Pages). This book is written to provide an easy to follow study on the subject of Special Functions and Orthogonal Polynomials. It is written in such a way that it can be used as a self study text. Basic knowledge of calculus and differential equations is needed. The book is intended to help students in engineering, physics and applied sciences understand various aspects of Special Functions and Orthogonal Polynomials that very often occur in engineering, physics, mathematics and applied sciences. The book is organized in chapters that are in a sense self contained. Chapter 1 deals with series solutions of Differential Equations. Gamma and Beta functions are studied in Chapter 2 together with other functions that are defined by integrals. Legendre Polynomials and Functions are studied in Chapter 3. Chapters 4 and 5 deal with Hermite, Laguerre and other Orthogonal Polynomials. A detailed treatise of Bessel Function in given in Chapter 6.

Orthogonal Polynomials of Several Variables

Download Orthogonal Polynomials of Several Variables PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107071895
Total Pages : 439 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Orthogonal Polynomials of Several Variables by : Charles F. Dunkl

Download or read book Orthogonal Polynomials of Several Variables written by Charles F. Dunkl and published by Cambridge University Press. This book was released on 2014-08-21 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated throughout, this revised edition contains 25% new material covering progress made in the field over the past decade.

Orthogonal Polynomials on the Unit Circle

Download Orthogonal Polynomials on the Unit Circle PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821848631
Total Pages : 498 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Orthogonal Polynomials on the Unit Circle by : Barry Simon

Download or read book Orthogonal Polynomials on the Unit Circle written by Barry Simon and published by American Mathematical Soc.. This book was released on 2009-08-05 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrodinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szego's theorems), limit theorems for the density of the zeros of orthogonal polynomials, matrix representations for multiplication by $z$ (CMV matrices), periodic Verblunsky coefficients from the point of view of meromorphic functions on hyperelliptic surfaces, and connections between the theories of orthogonal polynomials on the unit circle and on the real line.

Higher Mathematics for Physics and Engineering

Download Higher Mathematics for Physics and Engineering PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540878645
Total Pages : 693 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Higher Mathematics for Physics and Engineering by : Hiroyuki Shima

Download or read book Higher Mathematics for Physics and Engineering written by Hiroyuki Shima and published by Springer Science & Business Media. This book was released on 2010-04-12 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the rapid expansion of the frontiers of physics and engineering, the demand for higher-level mathematics is increasing yearly. This book is designed to provide accessible knowledge of higher-level mathematics demanded in contemporary physics and engineering. Rigorous mathematical structures of important subjects in these fields are fully covered, which will be helpful for readers to become acquainted with certain abstract mathematical concepts. The selected topics are: - Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis. This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.

Orthogonal Polynomials

Download Orthogonal Polynomials PDF Online Free

Author :
Publisher : Oxford University Press on Demand
ISBN 13 : 9780198506720
Total Pages : 301 pages
Book Rating : 4.5/5 (67 download)

DOWNLOAD NOW!


Book Synopsis Orthogonal Polynomials by : Walter Gautschi

Download or read book Orthogonal Polynomials written by Walter Gautschi and published by Oxford University Press on Demand. This book was released on 2004 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on constructive methods for, and applications of orthogonal polynomials, and the first available collection of relevant Matlab codes. The book begins with a concise introduction to the theory of polynomials orthogonal on the real line (or a portion thereof), relative to a positive measure of integration. Topics which are particularly relevant to computation are emphasized. The second chapter develops computational methods for generating the coefficients in the basic three-term recurrence relation. The methods are of two kinds: moment-based methods and discretization methods. The former are provided with a detailed sensitivity analysis. Other topics addressed concern Cauchy integrals of orthogonal polynomials and their computation, a new discussion of modification algorithms, and the generation of Sobolev orthogonal polynomials. The final chapter deals with selected applications: the numerical evaluation of integrals, especially by Gauss-type quadrature methods, polynomial least squares approximation, moment-preserving spline approximation, and the summation of slowly convergent series. Detailed historic and bibliographic notes are appended to each chapter. The book will be of interest not only to mathematicians and numerical analysts, but also to a wide clientele of scientists and engineers who perceive a need for applying orthogonal polynomials.

Modern Mathematical Methods for Physicists and Engineers

Download Modern Mathematical Methods for Physicists and Engineers PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521598279
Total Pages : 790 pages
Book Rating : 4.5/5 (982 download)

DOWNLOAD NOW!


Book Synopsis Modern Mathematical Methods for Physicists and Engineers by : Cyrus D. Cantrell

Download or read book Modern Mathematical Methods for Physicists and Engineers written by Cyrus D. Cantrell and published by Cambridge University Press. This book was released on 2000-10-09 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: A mathematical and computational education for students, researchers, and practising engineers.

Frontiers In Orthogonal Polynomials And Q-series

Download Frontiers In Orthogonal Polynomials And Q-series PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 981322889X
Total Pages : 577 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Frontiers In Orthogonal Polynomials And Q-series by : M Zuhair Nashed

Download or read book Frontiers In Orthogonal Polynomials And Q-series written by M Zuhair Nashed and published by World Scientific. This book was released on 2018-01-12 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume aims to highlight trends and important directions of research in orthogonal polynomials, q-series, and related topics in number theory, combinatorics, approximation theory, mathematical physics, and computational and applied harmonic analysis. This collection is based on the invited lectures by well-known contributors from the International Conference on Orthogonal Polynomials and q-Series, that was held at the University of Central Florida in Orlando, on May 10-12, 2015. The conference was dedicated to Professor Mourad Ismail on his 70th birthday.The editors strived for a volume that would inspire young researchers and provide a wealth of information in an engaging format. Theoretical, combinatorial and computational/algorithmic aspects are considered, and each chapter contains many references on its topic, when appropriate.

Orthogonal Polynomials

Download Orthogonal Polynomials PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821810235
Total Pages : 448 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Orthogonal Polynomials by : Gabor Szegš

Download or read book Orthogonal Polynomials written by Gabor Szegš and published by American Mathematical Soc.. This book was released on 1939-12-31 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.

Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials

Download Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082180359X
Total Pages : 154 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials by : Alouf Jirari

Download or read book Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials written by Alouf Jirari and published by American Mathematical Soc.. This book was released on 1995 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This memoir presents machinery for analyzing many discrete physical situations, and should be of interest to physicists, engineers, and mathematicians. We develop a theory for regular and singular Sturm-Liouville boundary value problems for difference equations, generalizing many of the known results for differential equations. We discuss the self-adjointness of these problems as well as their abstract spectral resolution in the appropriate [italic capital]L2 setting, and give necessary and sufficient conditions for a second-order difference operator to be self-adjoint and have orthogonal polynomials as eigenfunctions.

Orthogonal Polynomials

Download Orthogonal Polynomials PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400905017
Total Pages : 472 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Orthogonal Polynomials by : Paul Nevai

Download or read book Orthogonal Polynomials written by Paul Nevai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the Proceedings of the NATO Advanced Study Institute on "Orthogonal Polynomials and Their Applications" held at The Ohio State University in Columbus, Ohio, U.S.A. between May 22,1989 and June 3,1989. The Advanced Study Institute primarily concentrated on those aspects of the theory and practice of orthogonal polynomials which surfaced in the past decade when the theory of orthogonal polynomials started to experience an unparalleled growth. This progress started with Richard Askey's Regional Confer ence Lectures on "Orthogonal Polynomials and Special Functions" in 1975, and subsequent discoveries led to a substantial revaluation of one's perceptions as to the nature of orthogonal polynomials and their applicability. The recent popularity of orthogonal polynomials is only partially due to Louis de Branges's solution of the Bieberbach conjecture which uses an inequality of Askey and Gasper on Jacobi polynomials. The main reason lies in their wide applicability in areas such as Pade approximations, continued fractions, Tauberian theorems, numerical analysis, probability theory, mathematical statistics, scattering theory, nuclear physics, solid state physics, digital signal processing, electrical engineering, theoretical chemistry and so forth. This was emphasized and convincingly demonstrated during the presentations by both the principal speakers and the invited special lecturers. The main subjects of our Advanced Study Institute included complex orthogonal polynomials, signal processing, the recursion method, combinatorial interpretations of orthogonal polynomials, computational problems, potential theory, Pade approximations, Julia sets, special functions, quantum groups, weighted approximations, orthogonal polynomials associated with root systems, matrix orthogonal polynomials, operator theory and group representations.

Discrete Orthogonal Polynomials. (AM-164)

Download Discrete Orthogonal Polynomials. (AM-164) PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691127344
Total Pages : 178 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Discrete Orthogonal Polynomials. (AM-164) by : Jinho Baik

Download or read book Discrete Orthogonal Polynomials. (AM-164) written by Jinho Baik and published by Princeton University Press. This book was released on 2007 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher description

Fourier Series and Orthogonal Functions

Download Fourier Series and Orthogonal Functions PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486140733
Total Pages : 436 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Fourier Series and Orthogonal Functions by : Harry F. Davis

Download or read book Fourier Series and Orthogonal Functions written by Harry F. Davis and published by Courier Corporation. This book was released on 2012-09-05 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This incisive text deftly combines both theory and practical example to introduce and explore Fourier series and orthogonal functions and applications of the Fourier method to the solution of boundary-value problems. Directed to advanced undergraduate and graduate students in mathematics as well as in physics and engineering, the book requires no prior knowledge of partial differential equations or advanced vector analysis. Students familiar with partial derivatives, multiple integrals, vectors, and elementary differential equations will find the text both accessible and challenging. The first three chapters of the book address linear spaces, orthogonal functions, and the Fourier series. Chapter 4 introduces Legendre polynomials and Bessel functions, and Chapter 5 takes up heat and temperature. The concluding Chapter 6 explores waves and vibrations and harmonic analysis. Several topics not usually found in undergraduate texts are included, among them summability theory, generalized functions, and spherical harmonics. Throughout the text are 570 exercises devised to encourage students to review what has been read and to apply the theory to specific problems. Those preparing for further study in functional analysis, abstract harmonic analysis, and quantum mechanics will find this book especially valuable for the rigorous preparation it provides. Professional engineers, physicists, and mathematicians seeking to extend their mathematical horizons will find it an invaluable reference as well.

Mathematical Techniques for Engineers and Scientists

Download Mathematical Techniques for Engineers and Scientists PDF Online Free

Author :
Publisher : SPIE Press
ISBN 13 : 9780819445063
Total Pages : 822 pages
Book Rating : 4.4/5 (45 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Techniques for Engineers and Scientists by : Larry C. Andrews

Download or read book Mathematical Techniques for Engineers and Scientists written by Larry C. Andrews and published by SPIE Press. This book was released on 2003 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This self-study text for practicing engineers and scientists explains the mathematical tools that are required for advanced technological applications, but are often not covered in undergraduate school. The authors (University of Central Florida) describe special functions, matrix methods, vector operations, the transformation laws of tensors, the analytic functions of a complex variable, integral transforms, partial differential equations, probability theory, and random processes. The book could also serve as a supplemental graduate text."--Memento.

Special Functions of Mathematics for Engineers

Download Special Functions of Mathematics for Engineers PDF Online Free

Author :
Publisher : SPIE Press
ISBN 13 : 9780819426161
Total Pages : 512 pages
Book Rating : 4.4/5 (261 download)

DOWNLOAD NOW!


Book Synopsis Special Functions of Mathematics for Engineers by : Larry C. Andrews

Download or read book Special Functions of Mathematics for Engineers written by Larry C. Andrews and published by SPIE Press. This book was released on 1998 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern engineering and physical science applications demand a thorough knowledge of applied mathematics, particularly special functions. These typically arise in applications such as communication systems, electro-optics, nonlinear wave propagation, electromagnetic theory, electric circuit theory, and quantum mechanics. This text systematically introduces special functions and explores their properties and applications in engineering and science.

Mathematical Handbook for Scientists and Engineers

Download Mathematical Handbook for Scientists and Engineers PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486320235
Total Pages : 1154 pages
Book Rating : 4.4/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Handbook for Scientists and Engineers by : Granino A. Korn

Download or read book Mathematical Handbook for Scientists and Engineers written by Granino A. Korn and published by Courier Corporation. This book was released on 2013-04-26 with total page 1154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convenient access to information from every area of mathematics: Fourier transforms, Z transforms, linear and nonlinear programming, calculus of variations, random-process theory, special functions, combinatorial analysis, game theory, much more.