Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Optimization Of Cancer Radiotherapy
Download Optimization Of Cancer Radiotherapy full books in PDF, epub, and Kindle. Read online Optimization Of Cancer Radiotherapy ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Radiation Therapy Physics by : Alfred R. Smith
Download or read book Radiation Therapy Physics written by Alfred R. Smith and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide a uniquely comprehensive source of information on the entire field of radiation therapy physics. The very significant advances in imaging, computational, and accelerator technologies receive full consideration, as do such topics as the dosimetry of radiolabeled antibodies and dose calculation models. The scope of the book and the expertise of the authors make it essential reading for interested physicians and physicists and for radiation dosimetrists.
Book Synopsis Computational Radiology and Imaging by : Christoph Börgers
Download or read book Computational Radiology and Imaging written by Christoph Börgers and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles collected in this volume are based on lectures given at the IMA Workshop, "Computational Radiology and Imaging: Therapy and Diagnostics", March 17-21, 1997. Introductory articles by the editors have been added. The focus is on inverse problems involving electromagnetic radiation and particle beams, with applications to X-ray tomography, nuclear medicine, near-infrared imaging, microwave imaging, electron microscopy, and radiation therapy planning. Mathematical and computational tools and models which play important roles in this volume include the X-ray transform and other integral transforms, the linear Boltzmann equation and, for near-infrared imaging, its diffusion approximation, iterative methods for large linear and non-linear least-squares problems, iterative methods for linear feasibility problems, and optimization methods. The volume is intended not only for mathematical scientists and engineers working on these and related problems, but also for non-specialists. It contains much introductory expository material, and a large number of references. Many unsolved computational and mathematical problems of substantial practical importance are pointed out.
Book Synopsis Operations Research and Health Care by : Margaret L. Brandeau
Download or read book Operations Research and Health Care written by Margaret L. Brandeau and published by Springer Science & Business Media. This book was released on 2006-04-04 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt: In both rich and poor nations, public resources for health care are inadequate to meet demand. Policy makers and health care providers must determine how to provide the most effective health care to citizens using the limited resources that are available. This chapter describes current and future challenges in the delivery of health care, and outlines the role that operations research (OR) models can play in helping to solve those problems. The chapter concludes with an overview of this book – its intended audience, the areas covered, and a description of the subsequent chapters. KEY WORDS Health care delivery, Health care planning HEALTH CARE DELIVERY: PROBLEMS AND CHALLENGES 3 1.1 WORLDWIDE HEALTH: THE PAST 50 YEARS Human health has improved significantly in the last 50 years. In 1950, global life expectancy was 46 years [1]. That figure rose to 61 years by 1980 and to 67 years by 1998 [2]. Much of these gains occurred in low- and middle-income countries, and were due in large part to improved nutrition and sanitation, medical innovations, and improvements in public health infrastructure.
Book Synopsis New Technologies in Radiation Oncology by : Wolfgang C. Schlegel
Download or read book New Technologies in Radiation Oncology written by Wolfgang C. Schlegel and published by Springer Science & Business Media. This book was released on 2006-01-27 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: - Summarizes the state of the art in the most relevant areas of medical physics and engineering applied to radiation oncology - Covers all relevant areas of the subject in detail, including 3D imaging and image processing, 3D treatment planning, modern treatment techniques, patient positioning, and aspects of verification and quality assurance - Conveys information in a readily understandable way that will appeal to professionals and students with a medical background as well as to newcomers to radiation oncology from the field of physics
Book Synopsis Toxicities of Radiation Treatment for Breast Cancer by : Jean L. Wright
Download or read book Toxicities of Radiation Treatment for Breast Cancer written by Jean L. Wright and published by Springer. This book was released on 2019-03-15 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive guide to breast toxicity. Adjuvant radiation remains standard for a majority of women who undergo breast-conserving surgery for breast cancer, and indications for post-mastectomy and regional lymph node irradiation have also broadened with recent publications. At the same time, locoregional recurrence has declined and survival has improved in recent decades. In the current era of excellent breast cancer outcomes, then, considering the balance between toxicity and outcomes becomes paramount. Several recent editorials recommend considering toxicity against the potential benefit of adjuvant radiation in tailoring radiation decisions for individual patients. Thus, a clear understanding of the potential toxicities of adjuvant radiation for breast cancer is critical to optimizing outcomes in modern breast cancer management. Here, authors have collected recent data focused on toxicity of treatment that provide an opportunity for improving this optimization. Chapters cover both acute and late toxicity of radiation for breast cancer, including tailored risk assessment for each of these potential toxicities, considerations for including risk of toxicity in management decisions, and toxicity management strategies. This is an ideal guide for radiation oncologists, residents, and oncologists seeking to optimize care for their patients.
Book Synopsis Basic Clinical Radiobiology by : Michael C. Joiner
Download or read book Basic Clinical Radiobiology written by Michael C. Joiner and published by CRC Press. This book was released on 2018-08-28 with total page 711 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basic Clinical Radiobiology is a concise but comprehensive textbook setting out the essentials of the science and clinical application of radiobiology for those seeking accreditation in radiation oncology, clinical radiation physics, and radiation technology. Fully revised and updated to keep abreast of current developments in radiation biology and radiation oncology, this fifth edition continues to present in an interesting way the biological basis of radiation therapy, discussing the basic principles and significant developments that underlie the latest attempts to improve the radiotherapeutic management of cancer. This new edition is highly illustrated with attractive 2-colour presentation and now includes new chapters on stem cells, tissue response and the convergence of radiotherapy, radiobiology, and physics. It will be invaluable for FRCR (clinical oncology) and equivalent candidates, SpRs (and equivalent) in radiation oncology, practicing radiation oncologists and radiotherapists, as well as radiobiologists and radiotherapy physicists.
Book Synopsis Clinical Radiation Pathology by : Philip Rubin
Download or read book Clinical Radiation Pathology written by Philip Rubin and published by . This book was released on 1968 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Optimization of Human Cancer Radiotherapy by : G.W. Swan
Download or read book Optimization of Human Cancer Radiotherapy written by G.W. Swan and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mathematical models in this book are concerned with a variety of approaches to the manner in which the clinical radiologic treatment of human neoplasms can be improved. These improvements comprise ways of delivering radiation to the malignan cies so as to create considerable damage to tumor cells while sparing neighboring normal tissues. There is no unique way of dealing with these improvements. Accord ingly, in this book a number of different presentations are given. Each presentation has as its goal some aspect of the improvement, or optimization, of radiotherapy. This book is a collection of current ideas concerned with the optimization of human cancer radiotherapy. It is hoped that readers will build on this collection and develop superior approaches for the understanding of the ways to improve therapy. The author owes a special debt of thanks to Kathy Prindle who breezed through the typing of this book with considerable dexterity. TABLE OF CONTENTS Chapter GENERAL INTRODUCTION 1. 1 Introduction 1 1. 2 History of Cancer and its Treatment by Radiotherapy 8 1. 3 Some Mathematical Models of Tumor Growth 12 1. 4 Spatial Distribution of the Radiation Dose 20 Chapter 2 SURVIVAL CURVES FROM STATISTICAL MODELS 24 2. 1 Introduction 24 2. 2 The Target Model 26 2. 3 Single-hit-to-kill Model 27 2. 4 Multitarget, Single-hit Survival 29 2. 5 Multitarget, Multihit Survival 31 2. 6 Single-target, Multihit Survival 31 2.
Book Synopsis Khan's The Physics of Radiation Therapy by : Faiz M. Khan
Download or read book Khan's The Physics of Radiation Therapy written by Faiz M. Khan and published by Lippincott Williams & Wilkins. This book was released on 2014-04-03 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expand your understanding of the physics and practical clinical applications of advanced radiation therapy technologies with Khan's The Physics of Radiation Therapy, 5th edition, the book that set the standard in the field. This classic full-color text helps the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—develop a thorough understanding of 3D conformal radiotherapy (3D-CRT), stereotactic radiosurgery (SRS), high dose-rate remote afterloaders (HDR), intensity modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), Volumetric Modulated Arc Therapy (VMAT), and proton beam therapy, as well as the physical concepts underlying treatment planning, treatment delivery, and dosimetry. In preparing this new Fifth Edition, Dr. Kahn and new co-author Dr. John Gibbons made chapter-by-chapter revisions in the light of the latest developments in the field, adding new discussions, a new chapter, and new color illustrations throughout. Now even more precise and relevant, this edition is ideal as a reference book for practitioners, a textbook for students, and a constant companion for those preparing for their board exams. Features Stay on top of the latest advances in the field with new sections and/or discussions of Image Guided Radiation Therapy (IGRT), Volumetric Modulated Arc Therapy (VMAT), and the Failure Mode Event Analysis (FMEA) approach to quality assurance. Deepen your knowledge of Stereotactic Body Radiotherapy (SBRT) through a completely new chapter that covers SBRT in greater detail. Expand your visual understanding with new full color illustrations that reflect current practice and depict new procedures. Access the authoritative information you need fast through the new companion website which features fully searchable text and an image bank for greater convenience in studying and teaching. This is the tablet version which does not include access to the supplemental content mentioned in the text.
Book Synopsis Imbalanced Classification with Python by : Jason Brownlee
Download or read book Imbalanced Classification with Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2020-01-14 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Imbalanced classification are those classification tasks where the distribution of examples across the classes is not equal. Cut through the equations, Greek letters, and confusion, and discover the specialized techniques data preparation techniques, learning algorithms, and performance metrics that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover how to confidently develop robust models for your own imbalanced classification projects.
Book Synopsis Treatment Planning of High Dose-Rate Brachytherapy - Mathematical Modelling and Optimization by : Björn Morén
Download or read book Treatment Planning of High Dose-Rate Brachytherapy - Mathematical Modelling and Optimization written by Björn Morén and published by Linköping University Electronic Press. This book was released on 2021-01-12 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a widespread class of diseases that each year affects millions of people. It is mostly treated with chemotherapy, surgery, radiation therapy, or combinations thereof. High doserate (HDR) brachytherapy (BT) is one modality of radiation therapy, which is used to treat for example prostate cancer and gynecologic cancer. In BT, catheters (i.e., hollow needles) or applicators are used to place a single, small, but highly radioactive source of ionizing radiation close to or within a tumour, at dwell positions. An emerging technique for HDR BT treatment is intensity modulated brachytherapy (IMBT), in which static or dynamic shields are used to further shape the dose distribution, by hindering the radiation in certain directions. The topic of this thesis is the application of mathematical optimization to model and solve the treatment planning problem. The treatment planning includes decisions on catheter placement, that is, how many catheters to use and where to place them, as well as decisions for dwell times. Our focus is on the latter decisions. The primary treatment goals are to give the tumour a sufficiently high radiation dose while limiting the dose to the surrounding healthy organs, to avoid severe side effects. Because these aims are typically in conflict, optimization models of the treatment planning problem are inherently multiobjective. Compared to manual treatment planning, there are several advantages of using mathematical optimization for treatment planning. First, the optimization of treatment plans requires less time, compared to the time-consuming manual planning. Secondly, treatment plan quality can be improved by using optimization models and algorithms. Finally, with the use of sophisticated optimization models and algorithms the requirements of experience and skill level for the planners are lower. The use of optimization for treatment planning of IMBT is especially important because the degrees of freedom are too many for manual planning. The contributions of this thesis include the study of properties of treatment planning models, suggestions for extensions and improvements of proposed models, and the development of new optimization models that take clinically relevant, but uncustomary aspects, into account in the treatment planning. A common theme is the modelling of constraints on dosimetric indices, each of which is a restriction on the portion of a volume that receives at least a specified dose, or on the lowest dose that is received by a portion of a volume. Modelling dosimetric indices explicitly yields mixed-integer programs which are computationally demanding to solve. We have therefore investigated approximations of dosimetric indices, for example using smooth non-linear functions or convex functions. Contributions of this thesis are also a literature review of proposed treatment planning models for HDR BT, including mathematical analyses and comparisons of models, and a study of treatment planning for IMBT, which shows how robust optimization can be used to mitigate the risks from rotational errors in the shield placement. Cancer är en grupp av sjukdomar som varje år drabbar miljontals människor. De vanligaste behandlingsformerna är cellgifter, kirurgi, strålbehandling eller en kombination av dessa. I denna avhandling studeras högdosrat brachyterapi (HDR BT), vilket är en form av strålbehandling som till exempel används vid behandling av prostatacancer och gynekologisk cancer. Vid brachyterapibehandling används ihåliga nålar eller applikatorer för att placera en millimeterstor strålkälla antingen inuti eller intill en tumör. I varje nål finns det ett antal så kallade dröjpositioner där strålkällan kan stanna en viss tid för att bestråla den omkringliggande vävnaden, i alla riktningar. Genom att välja lämpliga tider för dröjpositionerna kan dosfördelningen formas efter patientens anatomi. Utöver HDR BT studeras också den nya tekniken intensitetsmodulerad brachyterapi (IMBT) vilket är en variation på HDR BT där skärmning används för att minska strålningen i vissa riktningar vilket gör det möjligt att forma dosfördelningen bättre. Planeringen av en behandling med HDR BT omfattar hur många nålar som ska användas, var de ska placeras samt hur länge strålkällan ska stanna i de olika dröjpositionerna. För HDR BT kan dessa vara flera hundra stycken medan det för IMBT snarare handlar om tusentals möjliga kombinationer av dröjpositioner och inställningar av skärmarna. Planeringen resulterar i en dosplan som beskriver hur hög stråldos som tumören och intilliggande frisk vävnad och riskorgan utsätts för. Dosplaneringen kan formuleras som ett matematiskt optimeringsproblem vilket är ämnet för avhandlingen. De övergripande målsättningarna för behandlingen är att ge en tillräckligt hög stråldos till tumören, för att döda alla cancerceller, samt att undvika att bestråla riskorgan eftersom det kan ge allvarliga biverkningar. Då alla målsättningarna inte samtidigt kan uppnås fullt ut så fås optimeringsproblem där flera målsättningar behöver prioriteras mot varandra. Utöver att dosplanen uppfyller kliniska behandlingsriktlinjer så är också tidsaspekten av planeringen viktig eftersom det är vanligt att den görs medan patienten är bedövad eller sövd. Vid utvärdering av en dosplan används dos-volymmått. För en tumör anger ett dosvolymmått hur stor andel av tumören som får en stråldos som är högre än en specificerad nivå. Dos-volymmått utgör en viktig del av målen för dosplaner som tas upp i kliniska behandlingsriktlinjer och ett exempel på ett sådant mål vid behandling av prostatacancer är att 95% av prostatans volym ska få en stråldos som är minst den föreskrivna dosen. Dos-volymmått utläses ur de kliniskt betydelsefulla dos-volym histogrammen som för varje stråldosnivå anger motsvarande volym som erhåller den dosen. En fördel med att använda matematisk optimering för dosplanering är att det kan spara tid jämfört med manuell planering. Med väl utvecklade modeller så finns det också möjlighet att skapa bättre dosplaner, till exempel genom att riskorganen nås av en lägre dos men med bibehållen dos till tumören. Vidare så finns det även fördelar med en process som inte är lika personberoende och som inte kräver erfarenhet i lika stor utsträckning som manuell dosplanering i dagsläget gör. Vid IMBT är det dessutom så många frihetsgrader att manuell planering i stort sett blir omöjligt. I avhandlingen ligger fokus på hur dos-volymmått kan användas och modelleras explicit i optimeringsmodeller, så kallade dos-volymmodeller. Detta omfattar såväl analys av egenskaper hos befintliga modeller, utvidgningar av tidigare använda modeller samt utveckling av nya optimeringsmodeller. Eftersom dos-volymmodeller modelleras som heltalsproblem, vilka är beräkningskrävande att lösa, så är det också viktigt att utveckla algoritmer som kan lösa dem tillräckligt snabbt för klinisk användning. Ett annat mål för modellutvecklingen är att kunna ta hänsyn till fler kriterier som är kliniskt relevanta men som inte ingår i dos-volymmodeller. En sådan kategori av mått är hur dosen är fördelad rumsligt, exempelvis att volymen av sammanhängande områden som får en alldeles för hög dos ska vara liten. Sådana områden går dock inte att undvika helt eftersom det är typiskt för dosplaner för brachyterapi att stråldosen fördelar sig ojämnt, med väldigt höga doser till små volymer precis intill strålkällorna. Vidare studeras hur små fel i inställningarna av skärmningen i IMBT påverkar dosplanens kvalitet och de olika utvärderingsmått som används kliniskt. Robust optimering har använts för att säkerställa att en dosplan tas fram som är robust sett till dessa möjliga fel i hur skärmningen är placerad. Slutligen ges en omfattande översikt över optimeringsmodeller för dosplanering av HDR BT och speciellt hur optimeringsmodellerna hanterar de motstridiga målsättningarna.
Book Synopsis Online Stochastic Combinatorial Optimization by : Pascal Van Hentenryck
Download or read book Online Stochastic Combinatorial Optimization written by Pascal Van Hentenryck and published by MIT Press (MA). This book was released on 2006 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: A framework for online decision making under uncertainty and time constraints, with online stochastic algorithms for implementing the framework, performance guarantees, and demonstrations of a variety of applications.
Book Synopsis Optimization of Cancer Radiotherapy by : Bhudatt R. Paliwal
Download or read book Optimization of Cancer Radiotherapy written by Bhudatt R. Paliwal and published by American Institute of Physics. This book was released on 1985 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Modeling for Prediction of Radiation-Induced Toxicity to Improve Therapeutic Ratio in the Modern Radiation Therapy Era by : Ester Orlandi
Download or read book Modeling for Prediction of Radiation-Induced Toxicity to Improve Therapeutic Ratio in the Modern Radiation Therapy Era written by Ester Orlandi and published by Frontiers Media SA. This book was released on 2021-07-27 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Use of Computers in Radiation Therapy by : Wolfgang Schlegel
Download or read book The Use of Computers in Radiation Therapy written by Wolfgang Schlegel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computers have had and will continue to have a tremendous impact on professional activity in almost all areas. This applies to radiological medicine and in particular to radiation therapy. This book compiles the most recent developments and results of the application of computers and computer science as presented at the XIIIth International Conference on the Use of Computers in Radiation Therapy in Heidelberg, Germany. The text of both oral presentations and posters is included. The book is intended for computer sientists, medical physicists, engineers and physicians in the field of radiation therapy and provides a comprehensive survey of the entire field.
Book Synopsis Intensity-Modulated Radiation Therapy by : S. Webb
Download or read book Intensity-Modulated Radiation Therapy written by S. Webb and published by CRC Press. This book was released on 2015-05-06 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clinical conformal radiotherapy is the holy grail of radiation treatment and is now becoming a reality through the combined efforts of physical scientists and engineers, who have improved the physical basis of radiotherapy, and the interest and concern of imaginative radiotherapists and radiographers. Intensity-Modulated Radiation Therapy de
Book Synopsis Biomathematical Problems in Optimization of Cancer Radiotherapy by : A.Y. Yakovlev
Download or read book Biomathematical Problems in Optimization of Cancer Radiotherapy written by A.Y. Yakovlev and published by CRC Press. This book was released on 2020-11-26 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomathematical Problems in Optimization of Cancer Radiotherapy provides insight into the role of cell population heterogeneity in the optimal control of fractionated irradiation of tumors. The book emphasizes the mathematical modeling aspect of the problem and presents the state of the art in the stochastic description of irradiated cell survival. Some of the results are of general theoretical interest and can be applied to other areas of optimal control methodology. Detailed explanations of all mathematical statements are provided throughout the text. The book is excellent for biomathematicians, radiotherapists, oncologists, health physicists, and other researchers and students interested in the topic.