Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Optimization In Banach Spaces
Download Optimization In Banach Spaces full books in PDF, epub, and Kindle. Read online Optimization In Banach Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Convexity and Optimization in Banach Spaces by : Viorel Barbu
Download or read book Convexity and Optimization in Banach Spaces written by Viorel Barbu and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: An updated and revised edition of the 1986 title Convexity and Optimization in Banach Spaces, this book provides a self-contained presentation of basic results of the theory of convex sets and functions in infinite-dimensional spaces. The main emphasis is on applications to convex optimization and convex optimal control problems in Banach spaces. A distinctive feature is a strong emphasis on the connection between theory and application. This edition has been updated to include new results pertaining to advanced concepts of subdifferential for convex functions and new duality results in convex programming. The last chapter, concerned with convex control problems, has been rewritten and completed with new research concerning boundary control systems, the dynamic programming equations in optimal control theory and periodic optimal control problems. Finally, the structure of the book has been modified to highlight the most recent progression in the field including fundamental results on the theory of infinite-dimensional convex analysis and includes helpful bibliographical notes at the end of each chapter.
Book Synopsis Functional Analysis and Applied Optimization in Banach Spaces by : Fabio Botelho
Download or read book Functional Analysis and Applied Optimization in Banach Spaces written by Fabio Botelho and published by Springer. This book was released on 2014-06-12 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.
Book Synopsis Optimization in Banach Spaces by : Alexander J. Zaslavski
Download or read book Optimization in Banach Spaces written by Alexander J. Zaslavski and published by Springer Nature. This book was released on 2022-09-29 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the study of constrained minimization problems on closed and convex sets in Banach spaces with a Frechet differentiable objective function. Such problems are well studied in a finite-dimensional space and in an infinite-dimensional Hilbert space. When the space is Hilbert there are many algorithms for solving optimization problems including the gradient projection algorithm which is one of the most important tools in the optimization theory, nonlinear analysis and their applications. An optimization problem is described by an objective function and a set of feasible points. For the gradient projection algorithm each iteration consists of two steps. The first step is a calculation of a gradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these two steps there is a computational error. In our recent research we show that the gradient projection algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. It should be mentioned that the properties of a Hilbert space play an important role. When we consider an optimization problem in a general Banach space the situation becomes more difficult and less understood. On the other hand such problems arise in the approximation theory. The book is of interest for mathematicians working in optimization. It also can be useful in preparation courses for graduate students. The main feature of the book which appeals specifically to this audience is the study of algorithms for convex and nonconvex minimization problems in a general Banach space. The book is of interest for experts in applications of optimization to the approximation theory. In this book the goal is to obtain a good approximate solution of the constrained optimization problem in a general Banach space under the presence of computational errors. It is shown that the algorithm generates a good approximate solution, if the sequence of computational errors is bounded from above by a small constant. The book consists of four chapters. In the first we discuss several algorithms which are studied in the book and prove a convergence result for an unconstrained problem which is a prototype of our results for the constrained problem. In Chapter 2 we analyze convex optimization problems. Nonconvex optimization problems are studied in Chapter 3. In Chapter 4 we study continuous algorithms for minimization problems under the presence of computational errors. The algorithm generates a good approximate solution, if the sequence of computational errors is bounded from above by a small constant. The book consists of four chapters. In the first we discuss several algorithms which are studied in the book and prove a convergence result for an unconstrained problem which is a prototype of our results for the constrained problem. In Chapter 2 we analyze convex optimization problems. Nonconvex optimization problems are studied in Chapter 3. In Chapter 4 we study continuous algorithms for minimization problems under the presence of computational errors.
Book Synopsis Banach Space Theory by : Marián Fabian
Download or read book Banach Space Theory written by Marián Fabian and published by Springer Science & Business Media. This book was released on 2011-02-04 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt: Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodým property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.
Book Synopsis Convex Optimization in Normed Spaces by : Juan Peypouquet
Download or read book Convex Optimization in Normed Spaces written by Juan Peypouquet and published by Springer. This book was released on 2015-03-18 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is intended to serve as a guide for graduate students and researchers who wish to get acquainted with the main theoretical and practical tools for the numerical minimization of convex functions on Hilbert spaces. Therefore, it contains the main tools that are necessary to conduct independent research on the topic. It is also a concise, easy-to-follow and self-contained textbook, which may be useful for any researcher working on related fields, as well as teachers giving graduate-level courses on the topic. It will contain a thorough revision of the extant literature including both classical and state-of-the-art references.
Book Synopsis Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization by : D. Butnariu
Download or read book Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization written by D. Butnariu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to present in a unified approach a series of results concerning totally convex functions on Banach spaces and their applications to building iterative algorithms for computing common fixed points of mea surable families of operators and optimization methods in infinite dimen sional settings. The notion of totally convex function was first studied by Butnariu, Censor and Reich [31] in the context of the space lRR because of its usefulness for establishing convergence of a Bregman projection method for finding common points of infinite families of closed convex sets. In this finite dimensional environment total convexity hardly differs from strict convexity. In fact, a function with closed domain in a finite dimensional Banach space is totally convex if and only if it is strictly convex. The relevancy of total convexity as a strengthened form of strict convexity becomes apparent when the Banach space on which the function is defined is infinite dimensional. In this case, total convexity is a property stronger than strict convexity but weaker than locally uniform convexity (see Section 1.3 below). The study of totally convex functions in infinite dimensional Banach spaces was started in [33] where it was shown that they are useful tools for extrapolating properties commonly known to belong to operators satisfying demanding contractivity requirements to classes of operators which are not even mildly nonexpansive.
Book Synopsis Optimization by Vector Space Methods by : David G. Luenberger
Download or read book Optimization by Vector Space Methods written by David G. Luenberger and published by John Wiley & Sons. This book was released on 1997-01-23 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
Book Synopsis Infinite Dimensional Optimization and Control Theory by : Hector O. Fattorini
Download or read book Infinite Dimensional Optimization and Control Theory written by Hector O. Fattorini and published by Cambridge University Press. This book was released on 1999-03-28 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: Treats optimal problems for systems described by ODEs and PDEs, using an approach that unifies finite and infinite dimensional nonlinear programming.
Book Synopsis Open Problems in the Geometry and Analysis of Banach Spaces by : Antonio J. Guirao
Download or read book Open Problems in the Geometry and Analysis of Banach Spaces written by Antonio J. Guirao and published by Springer. This book was released on 2016-07-26 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an collection of some easily-formulated problems that remain open in the study of the geometry and analysis of Banach spaces. Assuming the reader has a working familiarity with the basic results of Banach space theory, the authors focus on concepts of basic linear geometry, convexity, approximation, optimization, differentiability, renormings, weak compact generating, Schauder bases and biorthogonal systems, fixed points, topology and nonlinear geometry. The main purpose of this work is to help in convincing young researchers in Functional Analysis that the theory of Banach spaces is a fertile field of research, full of interesting open problems. Inside the Banach space area, the text should help expose young researchers to the depth and breadth of the work that remains, and to provide the perspective necessary to choose a direction for further study. Some of the problems are longstanding open problems, some are recent, some are more important and some are only local problems. Some would require new ideas, some may be resolved with only a subtle combination of known facts. Regardless of their origin or longevity, each of these problems documents the need for further research in this area.
Book Synopsis Applied Functional Analysis by : Eberhard Zeidler
Download or read book Applied Functional Analysis written by Eberhard Zeidler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.
Book Synopsis Perturbation Analysis of Optimization Problems by : J.Frederic Bonnans
Download or read book Perturbation Analysis of Optimization Problems written by J.Frederic Bonnans and published by Springer Science & Business Media. This book was released on 2000-05-11 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: A presentation of general results for discussing local optimality and computation of the expansion of value function and approximate solution of optimization problems, followed by their application to various fields, from physics to economics. The book is thus an opportunity for popularizing these techniques among researchers involved in other sciences, including users of optimization in a wide sense, in mechanics, physics, statistics, finance and economics. Of use to research professionals, including graduate students at an advanced level.
Book Synopsis Optimization with PDE Constraints by : Michael Hinze
Download or read book Optimization with PDE Constraints written by Michael Hinze and published by Springer Science & Business Media. This book was released on 2008-10-16 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solving optimization problems subject to constraints given in terms of partial d- ferential equations (PDEs) with additional constraints on the controls and/or states is one of the most challenging problems in the context of industrial, medical and economical applications, where the transition from model-based numerical si- lations to model-based design and optimal control is crucial. For the treatment of such optimization problems the interaction of optimization techniques and num- ical simulation plays a central role. After proper discretization, the number of op- 3 10 timization variables varies between 10 and 10 . It is only very recently that the enormous advances in computing power have made it possible to attack problems of this size. However, in order to accomplish this task it is crucial to utilize and f- ther explore the speci?c mathematical structure of optimization problems with PDE constraints, and to develop new mathematical approaches concerning mathematical analysis, structure exploiting algorithms, and discretization, with a special focus on prototype applications. The present book provides a modern introduction to the rapidly developing ma- ematical ?eld of optimization with PDE constraints. The ?rst chapter introduces to the analytical background and optimality theory for optimization problems with PDEs. Optimization problems with PDE-constraints are posed in in?nite dim- sional spaces. Therefore, functional analytic techniques, function space theory, as well as existence- and uniqueness results for the underlying PDE are essential to study the existence of optimal solutions and to derive optimality conditions.
Book Synopsis Convex Analysis and Monotone Operator Theory in Hilbert Spaces by : Heinz H. Bauschke
Download or read book Convex Analysis and Monotone Operator Theory in Hilbert Spaces written by Heinz H. Bauschke and published by Springer. This book was released on 2017-02-28 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.
Author :Diethard Ernst Pallaschke Publisher :Springer Science & Business Media ISBN 13 :9401715882 Total Pages :597 pages Book Rating :4.4/5 (17 download)
Book Synopsis Foundations of Mathematical Optimization by : Diethard Ernst Pallaschke
Download or read book Foundations of Mathematical Optimization written by Diethard Ernst Pallaschke and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many books on optimization consider only finite dimensional spaces. This volume is unique in its emphasis: the first three chapters develop optimization in spaces without linear structure, and the analog of convex analysis is constructed for this case. Many new results have been proved specially for this publication. In the following chapters optimization in infinite topological and normed vector spaces is considered. The novelty consists in using the drop property for weak well-posedness of linear problems in Banach spaces and in a unified approach (by means of the Dolecki approximation) to necessary conditions of optimality. The method of reduction of constraints for sufficient conditions of optimality is presented. The book contains an introduction to non-differentiable and vector optimization. Audience: This volume will be of interest to mathematicians, engineers, and economists working in mathematical optimization.
Book Synopsis Convex Functions, Monotone Operators and Differentiability by : Robert R. Phelps
Download or read book Convex Functions, Monotone Operators and Differentiability written by Robert R. Phelps and published by Springer. This book was released on 2013-12-11 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes start with an introduction to the differentiability of convex functions on Banach spaces, leading to the study of Asplund spaces and their intriguing relationship to monotone operators (and more general set-values maps) and Banach spaces with the Radon-Nikodym property. While much of this is classical, some of it is presented using streamlined proofs which were not available until recently. Considerable attention is paid to contemporary results on variational principles and perturbed optimization in Banach spaces, exhibiting their close connections with Asplund spaces. An introductory course in functional analysis is adequate background for reading these notes which can serve as the basis for a seminar of a one-term graduate course. There are numerous excercises, many of which form an integral part of the exposition.
Book Synopsis Convex Optimization Algorithms by : Dimitri Bertsekas
Download or read book Convex Optimization Algorithms written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2015-02-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.
Author :Alexander Tolstonogov Publisher :Springer Science & Business Media ISBN 13 :9780792366188 Total Pages :328 pages Book Rating :4.3/5 (661 download)
Book Synopsis Differential Inclusions in a Banach Space by : Alexander Tolstonogov
Download or read book Differential Inclusions in a Banach Space written by Alexander Tolstonogov and published by Springer Science & Business Media. This book was released on 2000-10-31 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preface to the English Edition The present monograph is a revised and enlarged alternative of the author's monograph [19] which was devoted to the development of a unified approach to studying differential inclusions, whose values of the right hand sides are compact, not necessarily convex subsets of a Banach space. This approach relies on ideas and methods of modem functional analysis, general topology, the theory of multi-valued mappings and continuous selectors. Although the basic content of the previous monograph has been remained the same this monograph has been partly re-organized and the author's recent results have been added. The contents of the present book are divided into five Chapters and an Appendix. The first Chapter of the J>ook has been left without changes and deals with multi-valued differential equations generated by a differential inclusion. The second Chapter has been significantly revised and extended. Here the au thor's recent results concerning extreme continuous selectors of multi-functions with decomposable values, multi-valued selectors ofmulti-functions generated by a differential inclusion, the existence of solutions of a differential inclusion, whose right hand side has different properties of semicontinuity at different points, have been included. Some of these results made it possible to simplify schemes for proofs concerning the existence of solutions of differential inclu sions with semicontinuous right hand side a.nd to obtain new results. In this Chapter the existence of solutions of different types are considered.