Algorithms for Optimization

Download Algorithms for Optimization PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262039427
Total Pages : 521 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Optimization by : Mykel J. Kochenderfer

Download or read book Algorithms for Optimization written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2019-03-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.

Optimization

Download Optimization PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 149872115X
Total Pages : 454 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Optimization by : Rajesh Kumar Arora

Download or read book Optimization written by Rajesh Kumar Arora and published by CRC Press. This book was released on 2015-05-06 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and co

Evolutionary Optimization Algorithms

Download Evolutionary Optimization Algorithms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118659503
Total Pages : 776 pages
Book Rating : 4.1/5 (186 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Optimization Algorithms by : Dan Simon

Download or read book Evolutionary Optimization Algorithms written by Dan Simon and published by John Wiley & Sons. This book was released on 2013-06-13 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.

Discrete Optimization Algorithms

Download Discrete Optimization Algorithms PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486453537
Total Pages : 564 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Discrete Optimization Algorithms by : Maciej M. Sys?o

Download or read book Discrete Optimization Algorithms written by Maciej M. Sys?o and published by Courier Corporation. This book was released on 2006-01-01 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rich in publications, the well-established field of discrete optimization nevertheless features relatively few books with ready-to-use computer programs. This book, geared toward upper-level undergraduates and graduate students, addresses that need. In addition, it offers a look at the programs' derivation and performance characteristics. Subjects include linear and integer programming, packing and covering, optimization on networks, and coloring and scheduling. A familiarity with design, analysis, and use of computer algorithms is assumed, along with knowledge of programming in Pascal. The book can be used as a supporting text in discrete optimization courses or as a software handbook, with twenty-six programs that execute the most common algorithms in each topic area. Each chapter is self-contained, allowing readers to browse at will.

MM Optimization Algorithms

Download MM Optimization Algorithms PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611974399
Total Pages : 229 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis MM Optimization Algorithms by : Kenneth Lange

Download or read book MM Optimization Algorithms written by Kenneth Lange and published by SIAM. This book was released on 2016-07-11 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: MM Optimization Algorithms?offers an overview of the MM principle, a device for deriving optimization algorithms satisfying the ascent or descent property. These algorithms can separate the variables of a problem, avoid large matrix inversions, linearize a problem, restore symmetry, deal with equality and inequality constraints gracefully, and turn a nondifferentiable problem into a smooth problem.? The author presents the first extended treatment of MM algorithms, which are ideal for high-dimensional optimization problems in data mining, imaging, and genomics; derives numerous algorithms from a broad diversity of application areas, with a particular emphasis on statistics, biology, and data mining; and summarizes a large amount of literature that has not reached book form before.?

Practical Optimization

Download Practical Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387711066
Total Pages : 675 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Practical Optimization by : Andreas Antoniou

Download or read book Practical Optimization written by Andreas Antoniou and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Optimization: Algorithms and Engineering Applications is a hands-on treatment of the subject of optimization. A comprehensive set of problems and exercises makes the book suitable for use in one or two semesters of a first-year graduate course or an advanced undergraduate course. Each half of the book contains a full semester’s worth of complementary yet stand-alone material. The practical orientation of the topics chosen and a wealth of useful examples also make the book suitable for practitioners in the field.

Optimization Algorithms on Matrix Manifolds

Download Optimization Algorithms on Matrix Manifolds PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400830249
Total Pages : 240 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Optimization Algorithms on Matrix Manifolds by : P.-A. Absil

Download or read book Optimization Algorithms on Matrix Manifolds written by P.-A. Absil and published by Princeton University Press. This book was released on 2009-04-11 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.

Computational Optimization, Methods and Algorithms

Download Computational Optimization, Methods and Algorithms PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642208592
Total Pages : 292 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Computational Optimization, Methods and Algorithms by : Slawomir Koziel

Download or read book Computational Optimization, Methods and Algorithms written by Slawomir Koziel and published by Springer. This book was released on 2011-06-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.

Constrained Global Optimization

Download Constrained Global Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 :
Total Pages : 160 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Constrained Global Optimization by : Panos M. Pardalos

Download or read book Constrained Global Optimization written by Panos M. Pardalos and published by Springer. This book was released on 1987 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Experimental Methods for the Analysis of Optimization Algorithms

Download Experimental Methods for the Analysis of Optimization Algorithms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642025382
Total Pages : 469 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Experimental Methods for the Analysis of Optimization Algorithms by : Thomas Bartz-Beielstein

Download or read book Experimental Methods for the Analysis of Optimization Algorithms written by Thomas Bartz-Beielstein and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.

Fundamentals of Optimization Techniques with Algorithms

Download Fundamentals of Optimization Techniques with Algorithms PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128224924
Total Pages : 323 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Optimization Techniques with Algorithms by : Sukanta Nayak

Download or read book Fundamentals of Optimization Techniques with Algorithms written by Sukanta Nayak and published by Academic Press. This book was released on 2020-08-25 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is a key concept in mathematics, computer science, and operations research, and is essential to the modeling of any system, playing an integral role in computer-aided design. Fundamentals of Optimization Techniques with Algorithms presents a complete package of various traditional and advanced optimization techniques along with a variety of example problems, algorithms and MATLAB© code optimization techniques, for linear and nonlinear single variable and multivariable models, as well as multi-objective and advanced optimization techniques. It presents both theoretical and numerical perspectives in a clear and approachable way. In order to help the reader apply optimization techniques in practice, the book details program codes and computer-aided designs in relation to real-world problems. Ten chapters cover, an introduction to optimization; linear programming; single variable nonlinear optimization; multivariable unconstrained nonlinear optimization; multivariable constrained nonlinear optimization; geometric programming; dynamic programming; integer programming; multi-objective optimization; and nature-inspired optimization. This book provides accessible coverage of optimization techniques, and helps the reader to apply them in practice. - Presents optimization techniques clearly, including worked-out examples, from traditional to advanced - Maps out the relations between optimization and other mathematical topics and disciplines - Provides systematic coverage of algorithms to facilitate computer coding - Gives MATLAB© codes in relation to optimization techniques and their use in computer-aided design - Presents nature-inspired optimization techniques including genetic algorithms and artificial neural networks

Convex Optimization Algorithms

Download Convex Optimization Algorithms PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 1886529280
Total Pages : 576 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization Algorithms by : Dimitri Bertsekas

Download or read book Convex Optimization Algorithms written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2015-02-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.

Accelerated Optimization for Machine Learning

Download Accelerated Optimization for Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811529108
Total Pages : 286 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Accelerated Optimization for Machine Learning by : Zhouchen Lin

Download or read book Accelerated Optimization for Machine Learning written by Zhouchen Lin and published by Springer Nature. This book was released on 2020-05-29 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning. Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.

Geometric Algorithms and Combinatorial Optimization

Download Geometric Algorithms and Combinatorial Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642978819
Total Pages : 374 pages
Book Rating : 4.6/5 (429 download)

DOWNLOAD NOW!


Book Synopsis Geometric Algorithms and Combinatorial Optimization by : Martin Grötschel

Download or read book Geometric Algorithms and Combinatorial Optimization written by Martin Grötschel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.

Nature-Inspired Optimization Algorithms

Download Nature-Inspired Optimization Algorithms PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0124167454
Total Pages : 277 pages
Book Rating : 4.1/5 (241 download)

DOWNLOAD NOW!


Book Synopsis Nature-Inspired Optimization Algorithms by : Xin-She Yang

Download or read book Nature-Inspired Optimization Algorithms written by Xin-She Yang and published by Elsevier. This book was released on 2014-02-17 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm

Optimization for Machine Learning

Download Optimization for Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 026201646X
Total Pages : 509 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Optimization for Machine Learning by : Suvrit Sra

Download or read book Optimization for Machine Learning written by Suvrit Sra and published by MIT Press. This book was released on 2012 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Algorithms for Convex Optimization

Download Algorithms for Convex Optimization PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108633994
Total Pages : 314 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Convex Optimization by : Nisheeth K. Vishnoi

Download or read book Algorithms for Convex Optimization written by Nisheeth K. Vishnoi and published by Cambridge University Press. This book was released on 2021-10-07 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.