Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Optimisation Distribuee Multicritere Par Algorithmes Genetiques Et Theorie Des Jeux Et Application A La Simulation Numerique De Problemes Dhypersustentation En Aerodynamique
Download Optimisation Distribuee Multicritere Par Algorithmes Genetiques Et Theorie Des Jeux Et Application A La Simulation Numerique De Problemes Dhypersustentation En Aerodynamique full books in PDF, epub, and Kindle. Read online Optimisation Distribuee Multicritere Par Algorithmes Genetiques Et Theorie Des Jeux Et Application A La Simulation Numerique De Problemes Dhypersustentation En Aerodynamique ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Genetic Algorithms and Fuzzy Multiobjective Optimization by : Masatoshi Sakawa
Download or read book Genetic Algorithms and Fuzzy Multiobjective Optimization written by Masatoshi Sakawa and published by Springer Science & Business Media. This book was released on 2002 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a wide range of actual real world applications. The theoretical material and applications place special stress on interactive decision-making aspects of fuzzy multiobjective optimization for human-centered systems in most realistic situations when dealing with fuzziness. The intended readers of this book are senior undergraduate students, graduate students, researchers, and practitioners in the fields of operations research, computer science, industrial engineering, management science, systems engineering, and other engineering disciplines that deal with the subjects of multiobjective programming for discrete or other hard optimization problems under fuzziness. Real world research applications are used throughout the book to illustrate the presentation. These applications are drawn from complex problems. Examples include flexible scheduling in a machine center, operation planning of district heating and cooling plants, and coal purchase planning in an actual electric power plant.
Download or read book OmeGA written by Dimitri Knjazew and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: OmeGA: A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems addresses two increasingly important areas in GA implementation and practice. OmeGA, or the ordering messy genetic algorithm, combines some of the latest in competent GA technology to solve scheduling and other permutation problems. Competent GAs are those designed for principled solutions of hard problems, quickly, reliably, and accurately. Permutation and scheduling problems are difficult combinatorial optimization problems with commercial import across a variety of industries. This book approaches both subjects systematically and clearly. The first part of the book presents the clearest description of messy GAs written to date along with an innovative adaptation of the method to ordering problems. The second part of the book investigates the algorithm on boundedly difficult test functions, showing principled scale up as problems become harder and longer. Finally, the book applies the algorithm to a test function drawn from the literature of scheduling.
Book Synopsis Real-World Applications of Genetic Algorithms by : Olympia Roeva
Download or read book Real-World Applications of Genetic Algorithms written by Olympia Roeva and published by BoD – Books on Demand. This book was released on 2012-03-07 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book addresses some of the most recent issues, with the theoretical and methodological aspects, of evolutionary multi-objective optimization problems and the various design challenges using different hybrid intelligent approaches. Multi-objective optimization has been available for about two decades, and its application in real-world problems is continuously increasing. Furthermore, many applications function more effectively using a hybrid systems approach. The book presents hybrid techniques based on Artificial Neural Network, Fuzzy Sets, Automata Theory, other metaheuristic or classical algorithms, etc. The book examines various examples of algorithms in different real-world application domains as graph growing problem, speech synthesis, traveling salesman problem, scheduling problems, antenna design, genes design, modeling of chemical and biochemical processes etc.
Book Synopsis Genetic Algorithms + Data Structures = Evolution Programs by : Zbigniew Michalewicz
Download or read book Genetic Algorithms + Data Structures = Evolution Programs written by Zbigniew Michalewicz and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques has been growing in the last decade, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science. The book is self-contained and the only prerequisite is basic undergraduate mathematics. It is aimed at researchers, practitioners, and graduate students in computer science and artificial intelligence, operations research, and engineering. This second edition includes several new sections and many references to recent developments. A simple example of genetic code and an index are also added. Writing an evolution program for a given problem should be an enjoyable experience - this book may serve as a guide to this task.
Book Synopsis Efficient and Accurate Parallel Genetic Algorithms by : Erick Cantú-Paz
Download or read book Efficient and Accurate Parallel Genetic Algorithms written by Erick Cantú-Paz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: As genetic algorithms (GAs) become increasingly popular, they are applied to difficult problems that may require considerable computations. In such cases, parallel implementations of GAs become necessary to reach high-quality solutions in reasonable times. But, even though their mechanics are simple, parallel GAs are complex non-linear algorithms that are controlled by many parameters, which are not well understood. Efficient and Accurate Parallel Genetic Algorithms is about the design of parallel GAs. It presents theoretical developments that improve our understanding of the effect of the algorithm's parameters on its search for quality and efficiency. These developments are used to formulate guidelines on how to choose the parameter values that minimize the execution time while consistently reaching solutions of high quality. Efficient and Accurate Parallel Genetic Algorithms can be read in several ways, depending on the readers' interests and their previous knowledge about these algorithms. Newcomers to the field will find the background material in each chapter useful to become acquainted with previous work, and to understand the problems that must be faced to design efficient and reliable algorithms. Potential users of parallel GAs that may have doubts about their practicality or reliability may be more confident after reading this book and understanding the algorithms better. Those who are ready to try a parallel GA on their applications may choose to skim through the background material, and use the results directly without following the derivations in detail. These readers will find that using the results can help them to choose the type of parallel GA that best suits their needs, without having to invest the time to implement and test various options. Once that is settled, even the most experienced users dread the long and frustrating experience of configuring their algorithms by trial and error. The guidelines contained herein will shorten dramatically the time spent tweaking the algorithm, although some experimentation may still be needed for fine-tuning. Efficient and Accurate Parallel Genetic Algorithms is suitable as a secondary text for a graduate level course, and as a reference for researchers and practitioners in industry.
Book Synopsis Parallel Genetic Algorithms by : Joachim Stender
Download or read book Parallel Genetic Algorithms written by Joachim Stender and published by IOS Press. This book was released on 1993 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Genetic Algorithms in Applications by : Rustem Popa
Download or read book Genetic Algorithms in Applications written by Rustem Popa and published by BoD – Books on Demand. This book was released on 2012-03-21 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic Algorithms (GAs) are one of several techniques in the family of Evolutionary Algorithms - algorithms that search for solutions to optimization problems by "evolving" better and better solutions. Genetic Algorithms have been applied in science, engineering, business and social sciences. This book consists of 16 chapters organized into five sections. The first section deals with some applications in automatic control, the second section contains several applications in scheduling of resources, and the third section introduces some applications in electrical and electronics engineering. The next section illustrates some examples of character recognition and multi-criteria classification, and the last one deals with trading systems. These evolutionary techniques may be useful to engineers and scientists in various fields of specialization, who need some optimization techniques in their work and who may be using Genetic Algorithms in their applications for the first time. These applications may be useful to many other people who are getting familiar with the subject of Genetic Algorithms.
Book Synopsis Foundations of Global Genetic Optimization by : Robert Schaefer
Download or read book Foundations of Global Genetic Optimization written by Robert Schaefer and published by Springer. This book was released on 2007-07-07 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic algorithms today constitute a family of e?ective global optimization methods used to solve di?cult real-life problems which arise in science and technology. Despite their computational complexity, they have the ability to explore huge data sets and allow us to study exceptionally problematic cases in which the objective functions are irregular and multimodal, and where information about the extrema location is unobtainable in other ways. Theybelongtotheclassofiterativestochasticoptimizationstrategiesthat, during each step, produce and evaluate the set of admissible points from the search domain, called the random sample or population. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Mechanisms which adopt sampling probability distribution are transposed from biology. They are based mainly on genetic code mutation and crossover, as well as on selection among living individuals. Such mechanisms have been testedbysolvingmultimodalproblemsinnature,whichiscon?rmedinpart- ular by the many species of animals and plants that are well ?tted to di?erent ecological niches. They direct the search process, making it more e?ective than a completely random one (search with a uniform sampling distribution). Moreover,well-tunedgenetic-basedoperationsdonotdecreasetheexploration ability of the whole admissible set, which is vital in the global optimization process. The features described above allow us to regard genetic algorithms as a new class of arti?cial intelligence methods which introduce heuristics, well tested in other ?elds, to the classical scheme of stochastic global search.
Book Synopsis Genetic Algorithms and Robotics by : Yuval Davidor
Download or read book Genetic Algorithms and Robotics written by Yuval Davidor and published by World Scientific. This book was released on 1991 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical optimization methodologies fall short in very large and complex domains. In this book is suggested a different approach to optimization, an approach which is based on the 'blind' and heuristic mechanisms of evolution and population genetics. The genetic approach to optimization introduces a new philosophy to optimization in general, but particularly to engineering. By introducing the ?genetic? approach to robot trajectory generation, much can be learned about the adaptive mechanisms of evolution and how these mechanisms can solve real world problems. It is suggested further that optimization at large may benefit greatly from the adaptive optimization exhibited by natural systems when attempting to solve complex optimization problems, and that the determinism of classical optimization models may sometimes be an obstacle in nonlinear systems.This book is unique in that it reports in detail on an application of genetic algorithms to a real world problem, and explains the considerations taken during the development work. Futhermore, it addresses robotics in two new aspects: the optimization of the trajectory specification which has so far been done by human operators and has not received much attention for both automation and optimization, and the introduction of a heuristic strategy to a field predominated by deterministic strategies.
Book Synopsis Introduction to Genetic Algorithms by : S.N. Sivanandam
Download or read book Introduction to Genetic Algorithms written by S.N. Sivanandam and published by Springer Science & Business Media. This book was released on 2007-10-24 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a basic introduction to genetic algorithms. It provides a detailed explanation of genetic algorithm concepts and examines numerous genetic algorithm optimization problems. In addition, the book presents implementation of optimization problems using C and C++ as well as simulated solutions for genetic algorithm problems using MATLAB 7.0. It also includes application case studies on genetic algorithms in emerging fields.
Book Synopsis Distributed Optimization, Game and Learning Algorithms by : Huiwei Wang
Download or read book Distributed Optimization, Game and Learning Algorithms written by Huiwei Wang and published by Springer. This book was released on 2021-02-05 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the fundamental theory of distributed optimization, game and learning. It includes those working directly in optimization,-and also many other issues like time-varying topology, communication delay, equality or inequality constraints,-and random projections. This book is meant for the researcher and engineer who uses distributed optimization, game and learning theory in fields like dynamic economic dispatch, demand response management and PHEV routing of smart grids.
Book Synopsis Genetic Algorithms and Genetic Programming by : Michael Affenzeller
Download or read book Genetic Algorithms and Genetic Programming written by Michael Affenzeller and published by CRC Press. This book was released on 2009-04-09 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for al
Book Synopsis Cellular Genetic Algorithms by : Enrique Alba
Download or read book Cellular Genetic Algorithms written by Enrique Alba and published by Springer Science & Business Media. This book was released on 2009-04-05 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cellular Genetic Algorithms defines a new class of optimization algorithms based on the concepts of structured populations and Genetic Algorithms (GAs). The authors explain and demonstrate the validity of these cellular genetic algorithms throughout the book with equal and parallel emphasis on both theory and practice. This book is a key source for studying and designing cellular GAs, as well as a self-contained primary reference book for these algorithms.
Book Synopsis Genetic Algorithms in Search, Optimization, and Machine Learning by : David Edward Goldberg
Download or read book Genetic Algorithms in Search, Optimization, and Machine Learning written by David Edward Goldberg and published by Addison-Wesley Professional. This book was released on 1989 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.
Book Synopsis Métaheuristiques by : Patrick Siarry
Download or read book Métaheuristiques written by Patrick Siarry and published by Editions Eyrolles. This book was released on 2014 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Les métaheuristiques et leurs applications. Les ingénieurs, les économistes, les décideurs se heurtent quotidiennement, quel que soit leur secteur d'activité, à des problèmes d'optimisation. Il peut s'agir de minimiser un coût de production, d'optimiser le parcours d'un véhicule ou le rendement d'un portefeuille boursier, de rationaliser l'utilisation de ressources, d'améliorer les performances d'un circuit électronique, de fournir une aide à la décision à des managers, etc. Cet ouvrage présente une famille de techniques d'optimisation, appelées "métaheuristiques", adaptées à la résolution de problèmes pour lesquels il est difficile de trouver un optimum global ou de bons optimums locaux par des méthodes plus classiques. Un ouvrage de référence illustré d'études de cas La première partie de l'ouvrage présente les principales métaheuristiques : recuit simulé, recherche avec tabous, recherche à voisinages variables, méthode GRASP, algorithmes évolutionnaires, fourmis artificielles et essaims particulaires. La deuxième partie décrit différentes variantes et extensions de ces méthodes, ainsi que de nouvelles voies de recherche. Y sont également proposés des conseils méthodologiques : techniques de modélisation, comparaisons de méthodes et choix de la méthode la mieux adaptée à un problème donné. La troisième partie présente trois études de cas réels : optimisation de systèmes logisitiques, optimisation de tournées de véhicules et gestion de trafic aérien. [Source : d'après la 4e de couv.]
Book Synopsis Practical Genetic Algorithms by : Randy L. Haupt
Download or read book Practical Genetic Algorithms written by Randy L. Haupt and published by Wiley-Interscience. This book was released on 1998-01-05 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: A tutorial on genetic algorithms with an emphasis on practical applications The rapidly expanding field of genetic algorithms has given rise to many new applications in a variety of disciplines. However, most of the existing books on the subject concentrate on theory. Practical Genetic Algorithms is the first introductory-level book to emphasize practical applications through the use of example problems. In an accessible style, the authors explain why the genetic algorithm is superior in many real-world applications, cover continuous parameter genetic algorithms, and provide in-depth trade-off analysis of genetic algorithm parameter selection. Written for the end user in engineering, science, and computer programming, as well as upper-level undergraduate and graduate students, Practical Genetic Algorithms: * Provides numerous practical example problems * Contains over 80 illustrations * Features many figures and tables * Includes three appendices: a glossary of terms, a list of genetic algorithm routines in pseudocode, and a list of symbols used in the book.
Book Synopsis Genetic Algorithms and Evolution Strategy in Engineering and Computer Science by : D. Quagliarella
Download or read book Genetic Algorithms and Evolution Strategy in Engineering and Computer Science written by D. Quagliarella and published by . This book was released on 1998-01-21 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of state-of-the-art lectures by experts in the field of theoretical, numerical and applied aspects of genetic algorithms for the computational treatment of continuous, discrete and combinatorial optimization problems. The theory presented in this book has numerous applications in fluid dynamics, structure mechanics, electromagnetic, automation control, resource optimization, image processing and economics