Optimal Sampling-Based Trajectory Planning For Autonomous Systems in Urban Environments

Download Optimal Sampling-Based Trajectory Planning For Autonomous Systems in Urban Environments PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (139 download)

DOWNLOAD NOW!


Book Synopsis Optimal Sampling-Based Trajectory Planning For Autonomous Systems in Urban Environments by : Mitchell Lichocki

Download or read book Optimal Sampling-Based Trajectory Planning For Autonomous Systems in Urban Environments written by Mitchell Lichocki and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Motivated by autonomous aerial vehicles, this thesis provides a methodology for optimal trajectory planning of affine systems in non-convex environments. The resulting approximation of the optimal trajectory can then be provided to a flight controller as a reference trajectory, which compares the actual state of the system with the reference trajectory and performs the necessary control input corrections. More specifically, a modified trajectory planner inspired by Kinodynamic RRT* is presented to solve optimal control problems for input constrained affine systems with non-convex state spaces. As a result, if a solution is obtained then the solution is guaranteed to verify the state and control input constraints of the problem. Additionally, a randomized sampler function is proposed for Kinodynamic RRT* using a Gaussian distribution across the system's state space. When the distribution is adequately sized lower cost approximate solutions of the optimal trajectory problem is obtained in less computation time when compared with other methods in the literature. The results are successfully applied to optimal control problems for an affine double integrator with drift that is subject to a maximum control input magnitude in non-convex environments.

Robust Sampling-based Motion Planning for Autonomous Vehicles in Uncertain Environments

Download Robust Sampling-based Motion Planning for Autonomous Vehicles in Uncertain Environments PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 237 pages
Book Rating : 4.:/5 (891 download)

DOWNLOAD NOW!


Book Synopsis Robust Sampling-based Motion Planning for Autonomous Vehicles in Uncertain Environments by : Brandon Douglas Luders

Download or read book Robust Sampling-based Motion Planning for Autonomous Vehicles in Uncertain Environments written by Brandon Douglas Luders and published by . This book was released on 2014 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: While navigating, autonomous vehicles often must overcome significant uncertainty in their understanding of the world around them. Real-world environments may be cluttered and highly dynamic, with uncertainty in both the current state and future evolution of environmental constraints. The vehicle may also face uncertainty in its own motion. To provide safe navigation under such conditions, motion planning algorithms must be able to rapidly generate smooth, certifiably robust trajectories in real-time. The primary contribution of this thesis is the development of a real-time motion planning framework capable of generating feasible paths for autonomous vehicles in complex environments, with robustness guarantees under both internal and external uncertainty. By leveraging the trajectory-wise constraint checking of sampling-based algorithms, and in particular rapidly-exploring random trees (RRT), the proposed algorithms can efficiently evaluate and enforce complex robustness conditions. For linear systems under bounded uncertainty, a sampling-based motion planner is presented which iteratively tightens constraints in order to guarantee safety for all feasible uncertainty realizations. The proposed bounded-uncertainty RRT* (BURRT*) algorithm scales favorably with environment complexity. Additionally, by building upon RRT*, BU-RRT* is shown to be asymptotically optimal, enabling it to efficiently generate and optimize robust, dynamically feasible trajectories. For large and/or unbounded uncertainties, probabilistically feasible planning is provided through the proposed chance-constrained RRT (CC-RRT) algorithm. Paths generated by CC-RRT are guaranteed probabilistically feasible for linear systems under Gaussian uncertainty, with extensions considered for nonlinear dynamics, output models, and/or non-Gaussian uncertainty. Probabilistic constraint satisfaction is represented in terms of chance constraints, extending existing approaches by considering both internal and external uncertainty, subject to time-step-wise and path-wise feasibility constraints. An explicit bound on the total risk of constraint violation is developed which can be efficiently evaluated online for each trajectory. The proposed CC-RRT* algorithm extends this approach to provide asymptotic optimality guarantees; an admissible risk-based objective uses the risk bounds to incentivize risk-averse trajectories. Applications of this framework are shown for several motion planning domains, including parafoil terminal guidance and urban navigation, where the system is subject to challenging environmental and uncertainty characterizations. Hardware results demonstrate a mobile robot utilizing this framework to safely avoid dynamic obstacles.

Motion planning and feedback control techniques with applications to long tractor-trailer vehicles

Download Motion planning and feedback control techniques with applications to long tractor-trailer vehicles PDF Online Free

Author :
Publisher : Linköping University Electronic Press
ISBN 13 : 9179298583
Total Pages : 119 pages
Book Rating : 4.1/5 (792 download)

DOWNLOAD NOW!


Book Synopsis Motion planning and feedback control techniques with applications to long tractor-trailer vehicles by : Oskar Ljungqvist

Download or read book Motion planning and feedback control techniques with applications to long tractor-trailer vehicles written by Oskar Ljungqvist and published by Linköping University Electronic Press. This book was released on 2020-04-20 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decades, improved sensor and hardware technologies as well as new methods and algorithms have made self-driving vehicles a realistic possibility in the near future. At the same time, there has been a growing demand within the transportation sector to increase efficiency and to reduce the environmental impact related to transportation of people and goods. Therefore, many leading automotive and technology companies have turned their attention towards developing advanced driver assistance systems and self-driving vehicles. Autonomous vehicles are expected to have their first big impact in closed environments, such as mines, harbors, loading and offloading sites. In such areas, the legal requirements are less restrictive and the surrounding environment is more controlled and predictable compared to urban areas. Expected positive outcomes include increased productivity and safety, reduced emissions and the possibility to relieve the human from performing complex or dangerous tasks. Within these sites, tractor-trailer vehicles are frequently used for transportation. These vehicles are composed of several interconnected vehicle segments, and are therefore large, complex and unstable while reversing. This thesis addresses the problem of designing efficient motion planning and feedback control techniques for such systems. The contributions of this thesis are within the area of motion planning and feedback control for long tractor-trailer combinations operating at low-speeds in closed and unstructured environments. It includes development of motion planning and feedback control frameworks, structured design tools for guaranteeing closed-loop stability and experimental validation of the proposed solutions through simulations, lab and field experiments. Even though the primary application in this work is tractor-trailer vehicles, many of the proposed approaches can with some adjustments also be used for other systems, such as drones and ships. The developed sampling-based motion planning algorithms are based upon the probabilistic closed-loop rapidly exploring random tree (CL-RRT) algorithm and the deterministic lattice-based motion planning algorithm. It is also proposed to use numerical optimal control offline for precomputing libraries of optimized maneuvers as well as during online planning in the form of a warm-started optimization step. To follow the motion plan, several predictive path-following control approaches are proposed with different computational complexity and performance. Common for these approaches are that they use a path-following error model of the vehicle for future predictions and are tailored to operate in series with a motion planner that computes feasible paths. The design strategies for the path-following approaches include linear quadratic (LQ) control and several advanced model predictive control (MPC) techniques to account for physical and sensing limitations. To strengthen the practical value of the developed techniques, several of the proposed approaches have been implemented and successfully demonstrated in field experiments on a full-scale test platform. To estimate the vehicle states needed for control, a novel nonlinear observer is evaluated on the full-scale test vehicle. It is designed to only utilize information from sensors that are mounted on the tractor, making the system independent of any sensor mounted on the trailer. Under de senaste årtiondena har utvecklingen av sensor- och hårdvaruteknik gått i en snabb takt, samtidigt som nya metoder och algoritmer har introducerats. Samtidigt ställs det stora krav på transportsektorn att öka effektiviteten och minska miljöpåverkan vid transporter av både människor och varor. Som en följd av detta har många ledande fordonstillverkare och teknikföretag börjat satsat på att utveckla avancerade förarstödsystem och självkörande fordon. Även forskningen inom autonoma fordon har under de senaste årtiondena kraftig ökat då en rad tekniska problem återstår att lösas. Förarlösa fordon förväntas få sitt första stora genombrott i slutna miljöer, såsom gruvor, hamnar, lastnings- och lossningsplatser. I sådana områden är lagstiftningen mindre hård jämfört med stadsområden och omgivningen är mer kontrollerad och förutsägbar. Några av de förväntade positiva effekterna är ökad produktivitet och säkerhet, minskade utsläpp och möjligheten att avlasta människor från att utföra svåra eller farliga uppgifter. Inom dessa platser används ofta lastbilar med olika släpvagnskombinationer för att transportera material. En sådan fordonskombination är uppbyggd av flera ihopkopplade moduler och är således utmanande att backa då systemet är instabilt. Detta gör det svårt att utforma ramverk för att styra sådana system vid exempelvis autonom backning. Självkörande fordon är mycket komplexa system som består av en rad olika komponenter vilka är designade för att lösa separata delproblem. Två viktiga komponenter i ett självkörande fordon är dels rörelseplaneraren som har i uppgift att planera hur fordonet ska röra sig för att på ett säkert sätt nå ett överordnat mål, och dels den banföljande regulatorn vars uppgift är att se till att den planerade manövern faktiskt utförs i praktiken trots störningar och modellfel. I denna avhandling presenteras flera olika algoritmer för att planera och utföra komplexa manövrar för lastbilar med olika typer av släpvagnskombinationer. De presenterade algoritmerna är avsedda att användas som avancerade förarstödsystem eller som komponenter i ett helt autonomt system. Även om den primära applikationen i denna avhandling är lastbilar med släp, kan många av de förslagna algoritmerna även användas för en rad andra system, så som drönare och båtar. Experimentell validering är viktigt för att motivera att en föreslagen algoritm är användbar i praktiken. I denna avhandling har flera av de föreslagna planerings- och reglerstrategierna implementerats på en småskalig testplattform och utvärderats i en kontrollerad labbmiljö. Utöver detta har även flera av de föreslagna ramverken implementerats och utvärderats i fältexperiment på en fullskalig test-plattform som har utvecklats i samarbete med Scania CV. Här utvärderas även en ny metod för att skatta släpvagnens beteende genom att endast utnyttja information från sensorer monterade på lastbilen, vilket gör det föreslagna ramverket oberoende av sensorer monterade på släpvagnen.

Optimizing Path Planning in 3D Environments with Reinforcement Learning and Sampling-based Algorithms

Download Optimizing Path Planning in 3D Environments with Reinforcement Learning and Sampling-based Algorithms PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (138 download)

DOWNLOAD NOW!


Book Synopsis Optimizing Path Planning in 3D Environments with Reinforcement Learning and Sampling-based Algorithms by : Wensi Huang

Download or read book Optimizing Path Planning in 3D Environments with Reinforcement Learning and Sampling-based Algorithms written by Wensi Huang and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Motion planning (also known as path planning) is a fundamental problem in the field of robotics and autonomous systems, where the objective is to find a collision-free path for an agent from a starting position to a goal state. Despite the importance of motion planning, comparing the performance of various algorithms under the same environment has been rarely explored. Furthermore, the lack of sufficient evaluation metrics in reinforcement learning (RL) studies can hinder the understanding of each algorithm's performance. This thesis investigates the problem of finding the optimal path in 3D environments using both sampling-based and RL algorithms. The study evaluates the performance of six algorithms, including Rapidly-exploring Random Trees (RRT), RRT*, Q-learning, Deep Q-Network (DQN), Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO), while considering the impact of different features in complex 3D spaces. Simulation results indicate that RRT* outperforms other algorithms in completing a specific path planning task in a 3D grid map. The significance of this study lies in providing a comprehensive comparison of different path planning algorithms under the same environment and evaluating them using various metrics. This evaluation can serve as a useful guide for selecting an appropriate algorithm to solve specific motion planning problems.

Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception

Download Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception PDF Online Free

Author :
Publisher : KIT Scientific Publishing
ISBN 13 : 3731510391
Total Pages : 178 pages
Book Rating : 4.7/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception by : Hubmann, Constantin

Download or read book Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception written by Hubmann, Constantin and published by KIT Scientific Publishing. This book was released on 2021-09-13 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive behavior of the other agents explicitly. Simulating the most likely future scenarios allows to find an optimal policy online that enables non-conservative planning under uncertainty.

Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios

Download Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios PDF Online Free

Author :
Publisher : Linköping University Electronic Press
ISBN 13 : 9179296939
Total Pages : 25 pages
Book Rating : 4.1/5 (792 download)

DOWNLOAD NOW!


Book Synopsis Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios by : Mahdi Morsali

Download or read book Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios written by Mahdi Morsali and published by Linköping University Electronic Press. This book was released on 2021-03-25 with total page 25 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tremendous industrial and academic progress and investments have been made in au-tonomous driving, but still many aspects are unknown and require further investigation,development and testing. A key part of an autonomous driving system is an efficient plan-ning algorithm with potential to reduce accidents, or even unpleasant and stressful drivingexperience. A higher degree of automated planning also makes it possible to have a betterenergy management strategy with improved performance through analysis of surroundingenvironment of autonomous vehicles and taking action in a timely manner. This thesis deals with planning of autonomous vehicles in different urban scenarios, road,and vehicle conditions. The main concerns in designing the planning algorithms, are realtime capability, safety and comfort. The planning algorithms developed in this thesis aretested in simulation traffic situations with multiple moving vehicles as obstacles. The re-search conducted in this thesis falls mainly into two parts, the first part investigates decou-pled trajectory planning algorithms with a focus on speed planning, and the second sectionexplores different coupled planning algorithms in spatiotemporal environments where pathand speed are calculated simultaneously. Additionally, a behavioral analysis is carried outto evaluate different tactical maneuvers the autonomous vehicle can have considering theinitial states of the ego and surrounding vehicles. Particularly relevant for heavy duty vehicles, the issues addressed in designing a safe speedplanner in the first part are road conditions such as banking, friction, road curvature andvehicle characteristics. The vehicle constraints on acceleration, jerk, steering, steer ratelimitations and other safety limitations such as rollover are further considerations in speedplanning algorithms. For real time purposes, a minimum working roll model is identified us-ing roll angle and lateral acceleration data collected in a heavy duty truck. In the decoupledplanners, collision avoiding is treated using a search and optimization based planner. In an autonomous vehicle, the structure of the road network is known to the vehicle throughmapping applications. Therefore, this key property can be used in planning algorithms toincrease efficiency. The second part of the thesis, is focused on handling moving obstaclesin a spatiotemporal environment and collision-free planning in complex urban structures.Spatiotemporal planning holds the benefits of exhaustive search and has advantages com-pared to decoupled planning, but the search space in spatiotemporal planning is complex.Support vector machine is used to simplify the search problem to make it more efficient.A SVM classifies the surrounding obstacles into two categories and efficiently calculate anobstacle free region for the ego vehicle. The formulation achieved by solving SVM, con-tains information about the initial point, destination, stationary and moving obstacles.These features, combined with smoothness property of the Gaussian kernel used in SVMformulation is proven to be able to solve complex planning missions in a safe way. Here, three algorithms are developed by taking advantages of SVM formulation, a greedysearch algorithm, an A* lattice based planner and a geometrical based planner. One general property used in all three algorithms is reduced search space through using SVM. In A*lattice based planner, significant improvement in calculation time, is achieved by using theinformation from SVM formulation to calculate a heuristic for planning. Using this heuristic,the planning algorithm treats a simple driving scenario and a complex urban structureequal, as the structure of the road network is included in SVM solution. Inspired byobserving significant improvements in calculation time using SVM heuristic and combiningthe collision information from SVM surfaces and smoothness property, a geometrical planneris proposed that leads to further improvements in calculation time. Realistic driving scenarios such as roundabouts, intersections and takeover maneuvers areused, to test the performance of the proposed algorithms in simulation. Different roadconditions with large banking, low friction and high curvature, and vehicles prone to safetyissues, specially rollover, are evaluated to calculate the speed profile limits. The trajectoriesachieved by the proposed algorithms are compared to profiles calculated by optimal controlsolutions.

Application of Sampling-Based Motion Planning Algorithms in Autonomous Vehicle Navigation

Download Application of Sampling-Based Motion Planning Algorithms in Autonomous Vehicle Navigation PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Application of Sampling-Based Motion Planning Algorithms in Autonomous Vehicle Navigation by : Weria Khaksar

Download or read book Application of Sampling-Based Motion Planning Algorithms in Autonomous Vehicle Navigation written by Weria Khaksar and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: With the development of the autonomous driving technology, the autonomous vehicle has become one of the key issues for supporting our daily life and economical activities. One of the challenging research areas in autonomous vehicle is the development of an intelligent motion planner, which is able to guide the vehicle in dynamic changing environments. In this chapter, a novel sampling-based navigation architecture is introduced, which employs the optimal properties of RRT* planner and the low running time property of low-dispersion sampling-based algorithms. Furthermore, a novel segmentation method is proposed, which divides the sampling domain into valid and tabu segments. The resulted navigation architecture is able to guide the autonomous vehicle in complex situations such as takeover or crowded environments. The performance of the proposed method is tested through simulation in different scenarios and also by comparing the performances of RRT and RRT* algorithms. The proposed method provides near-optimal solutions with smaller trees and in lower running time.

A Robust Motion Planning Approach for Autonomous Driving in Urban Areas

Download A Robust Motion Planning Approach for Autonomous Driving in Urban Areas PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 167 pages
Book Rating : 4.:/5 (311 download)

DOWNLOAD NOW!


Book Synopsis A Robust Motion Planning Approach for Autonomous Driving in Urban Areas by : Gaston A. Fiore

Download or read book A Robust Motion Planning Approach for Autonomous Driving in Urban Areas written by Gaston A. Fiore and published by . This book was released on 2008 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents an improved sampling-based motion planning algorithm, Robust RRT, that is designed specifically for large robotic vehicles and uncertain, dynamic environments. Five main extensions have been made to the original RRT algorithm to improve performance in this type of applications. The closed-loop system is used for state propagation, enabling easy handling of complex, nonlinear, and unstable dynamics. The environment structure is exploited during the sampling process, increasing the probability that a given sample will be reachable. Efficient heuristics are employed in the expansion of the tree and a risk penalty is incorporated to capture uncertainty in the environment and keep the vehicle a safe distance away from hazards. The safety of the vehicle is guaranteed with the assumption of no unexpected changes in the environment, which is achieved by requiring that every trajectory sent for execution ends in a state with the vehicle stopped. Finally, risk evaluation follows a lazy evaluation strategy, allowing the algorithm to spend most of the computation time in the expansion step. The effectiveness of the Robust RRT algorithm for planning in an urban environment is demonstrated through numerous simulated scenarios and real data corresponding to its implementation in MIT's robotic vehicle that competed in the DARPA Urban Challenge.

The Complexity of Robot Motion Planning

Download The Complexity of Robot Motion Planning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262031363
Total Pages : 220 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis The Complexity of Robot Motion Planning by : John Canny

Download or read book The Complexity of Robot Motion Planning written by John Canny and published by MIT Press. This book was released on 1988 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Complexity of Robot Motion Planning makes original contributions both to roboticsand to the analysis of algorithms. In this groundbreaking monograph John Canny resolveslong-standing problems concerning the complexity of motion planning and, for the central problem offinding a collision free path for a jointed robot in the presence of obstacles, obtains exponentialspeedups over existing algorithms by applying high-powered new mathematical techniques.Canny's newalgorithm for this "generalized movers' problem," the most-studied and basic robot motion planningproblem, has a single exponential running time, and is polynomial for any given robot. The algorithmhas an optimal running time exponent and is based on the notion of roadmaps - one-dimensionalsubsets of the robot's configuration space. In deriving the single exponential bound, Cannyintroduces and reveals the power of two tools that have not been previously used in geometricalgorithms: the generalized (multivariable) resultant for a system of polynomials and Whitney'snotion of stratified sets. He has also developed a novel representation of object orientation basedon unnormalized quaternions which reduces the complexity of the algorithms and enhances theirpractical applicability.After dealing with the movers' problem, the book next attacks and derivesseveral lower bounds on extensions of the problem: finding the shortest path among polyhedralobstacles, planning with velocity limits, and compliant motion planning with uncertainty. Itintroduces a clever technique, "path encoding," that allows a proof of NP-hardness for the first twoproblems and then shows that the general form of compliant motion planning, a problem that is thefocus of a great deal of recent work in robotics, is non-deterministic exponential time hard. Cannyproves this result using a highly original construction.John Canny received his doctorate from MITAnd is an assistant professor in the Computer Science Division at the University of California,Berkeley. The Complexity of Robot Motion Planning is the winner of the 1987 ACM DoctoralDissertation Award.

Differentially Flat Systems

Download Differentially Flat Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 148227664X
Total Pages : 489 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Differentially Flat Systems by : Hebertt Sira-Ramírez

Download or read book Differentially Flat Systems written by Hebertt Sira-Ramírez and published by CRC Press. This book was released on 2018-10-03 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrating the power, simplicity, and generality of the concept of flatness, this reference explains how to identify, utilize, and apply flatness in system planning and design. The book includes a large assortment of exercises and models that range from elementary to complex classes of systems. Leading students and professionals through a vast array of designs, simulations, and analytical studies on the traditional uses of flatness, Differentially Flat Systems contains an extensive amount of examples that showcase the value of flatness in system design, demonstrate how flatness can be assessed in the context of perturbed systems and apply static and dynamic feedback controller design techniques.

Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications

Download Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811681295
Total Pages : 1124 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications by : Nor Muzlifah Mahyuddin

Download or read book Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications written by Nor Muzlifah Mahyuddin and published by Springer Nature. This book was released on 2022-02-11 with total page 1124 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceeding is a collection of research papers presented at the 11th International Conference on Robotics, Vision, Signal Processing & Power Applications (RoViSP 2021). The theme of RoViSP 2021 “Enhancing Research and Innovation through the Fourth Industrial Revolution (IR 4.0)” served as a platform for researchers, scientists, engineers, academicians as well as industrial professionals from all around the globe to present and exchange their research findings and development activities through oral presentations. The book covers various topics of interest, including: Robotics, Control, Mechatronics and Automation Telecommunication Systems and Applications Electronic Design and Applications Vision, Image and Signal Processing Electrical Power, Energy and Industrial Applications Computer and Information Technology Biomedical Engineering and Applications Intelligent Systems Internet-of-things Mechatronics Mobile Technology

Algorithmic and Computational Robotics

Download Algorithmic and Computational Robotics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439864136
Total Pages : 390 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Algorithmic and Computational Robotics by : Bruce Donald

Download or read book Algorithmic and Computational Robotics written by Bruce Donald and published by CRC Press. This book was released on 2001-04-21 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms that control the computational processes relating sensors and actuators are indispensable for robot navigation and the perception of the world in which they move. Therefore, a deep understanding of how algorithms work to achieve this control is essential for the development of efficient and usable robots in a broad field of applications.

Path Planning for Autonomous Vehicle

Download Path Planning for Autonomous Vehicle PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1789239915
Total Pages : 150 pages
Book Rating : 4.7/5 (892 download)

DOWNLOAD NOW!


Book Synopsis Path Planning for Autonomous Vehicle by : Umar Zakir Abdul Hamid

Download or read book Path Planning for Autonomous Vehicle written by Umar Zakir Abdul Hamid and published by BoD – Books on Demand. This book was released on 2019-10-02 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Path Planning (PP) is one of the prerequisites in ensuring safe navigation and manoeuvrability control for driverless vehicles. Due to the dynamic nature of the real world, PP needs to address changing environments and how autonomous vehicles respond to them. This book explores PP in the context of road vehicles, robots, off-road scenarios, multi-robot motion, and unmanned aerial vehicles (UAVs ).

Autonomous Vehicle

Download Autonomous Vehicle PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535125842
Total Pages : 158 pages
Book Rating : 4.5/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Autonomous Vehicle by : Andrzej Zak

Download or read book Autonomous Vehicle written by Andrzej Zak and published by BoD – Books on Demand. This book was released on 2016-09-07 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autonomous vehicles, despite their relatively short history, have already found practical application in many areas of human activity. Such vehicles are usually replacing people in performing tasks that require long operating time and are held in inaccessible or hazardous environments. Nevertheless, autonomous robotics is probably the area that is being developed the most because of the great demand for such devices in different areas of our lives. This book is a collection of experiences shared by scientists from different parts of the world doing researches and daily exploiting autonomous systems. Giving this book in the hands of the reader, we hope that it will be a treasure trove of knowledge and inspiration for further research in the field of autonomous vehicles.

Robot Motion Planning

Download Robot Motion Planning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461540224
Total Pages : 668 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Robot Motion Planning by : Jean-Claude Latombe

Download or read book Robot Motion Planning written by Jean-Claude Latombe and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the ultimate goals in Robotics is to create autonomous robots. Such robots will accept high-level descriptions of tasks and will execute them without further human intervention. The input descriptions will specify what the user wants done rather than how to do it. The robots will be any kind of versatile mechanical device equipped with actuators and sensors under the control of a computing system. Making progress toward autonomous robots is of major practical inter est in a wide variety of application domains including manufacturing, construction, waste management, space exploration, undersea work, as sistance for the disabled, and medical surgery. It is also of great technical interest, especially for Computer Science, because it raises challenging and rich computational issues from which new concepts of broad useful ness are likely to emerge. Developing the technologies necessary for autonomous robots is a formidable undertaking with deep interweaved ramifications in auto mated reasoning, perception and control. It raises many important prob lems. One of them - motion planning - is the central theme of this book. It can be loosely stated as follows: How can a robot decide what motions to perform in order to achieve goal arrangements of physical objects? This capability is eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world. The minimum one would expect from an autonomous robot is the ability to plan its x Preface own motions.

The DARPA Urban Challenge

Download The DARPA Urban Challenge PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 364203991X
Total Pages : 651 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis The DARPA Urban Challenge by : Martin Buehler

Download or read book The DARPA Urban Challenge written by Martin Buehler and published by Springer. This book was released on 2009-11-26 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: By the dawn of the new millennium, robotics has undergone a major transformation in scope and dimensions. This expansion has been brought about by the maturity of the field and the advances in its related technologies. From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their significance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing field.

Decision-making Strategies for Automated Driving in Urban Environments

Download Decision-making Strategies for Automated Driving in Urban Environments PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030459055
Total Pages : 205 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Decision-making Strategies for Automated Driving in Urban Environments by : Antonio Artuñedo

Download or read book Decision-making Strategies for Automated Driving in Urban Environments written by Antonio Artuñedo and published by Springer Nature. This book was released on 2020-04-25 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes an effective decision-making and planning architecture for enhancing the navigation capabilities of automated vehicles in the presence of non-detailed, open-source maps. The system involves dynamically obtaining road corridors from map information and utilizing a camera-based lane detection system to update and enhance the navigable space in order to address the issues of intrinsic uncertainty and low-fidelity. An efficient and human-like local planner then determines, within a probabilistic framework, a safe motion trajectory, ensuring the continuity of the path curvature and limiting longitudinal and lateral accelerations. LiDAR-based perception is then used to identify the driving scenario, and subsequently re-plan the trajectory, leading in some cases to adjustment of the high-level route to reach the given destination. The method has been validated through extensive theoretical and experimental analyses, which are reported here in detail.