Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
On The Weak Law Of Large Numbers
Download On The Weak Law Of Large Numbers full books in PDF, epub, and Kindle. Read online On The Weak Law Of Large Numbers ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Laws of Large Numbers by : Pál Révész
Download or read book The Laws of Large Numbers written by Pál Révész and published by Academic Press. This book was released on 2014-06-20 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Law of Large Numbers deals with three types of law of large numbers according to the following convergences: stochastic, mean, and convergence with probability 1. The book also investigates the rate of convergence and the laws of the iterated logarithm. It reviews measure theory, probability theory, stochastic processes, ergodic theory, orthogonal series, Huber spaces, Banach spaces, as well as the special concepts and general theorems of the laws of large numbers. The text discusses the laws of large numbers of different classes of stochastic processes, such as independent random variables, orthogonal random variables, stationary sequences, symmetrically dependent random variables and their generalizations, and also Markov chains. It presents other laws of large numbers for subsequences of sequences of random variables, including some general laws of large numbers which are not related to any concrete class of stochastic processes. The text cites applications of the theorems, as in numbers theory, statistics, and information theory. The text is suitable for mathematicians, economists, scientists, statisticians, or researchers involved with the probability and relative frequency of large numbers.
Download or read book Probability written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-08-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Book Synopsis On the Weak Law of Large Numbers by : Cyrus Derman
Download or read book On the Weak Law of Large Numbers written by Cyrus Derman and published by . This book was released on 1956 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis High-Dimensional Probability by : Roman Vershynin
Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Book Synopsis Sums of Independent Random Variables by : V.V. Petrov
Download or read book Sums of Independent Random Variables written by V.V. Petrov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classic "Limit Dislribntions fOT slt1ns of Independent Ramdorn Vari ables" by B.V. Gnedenko and A.N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has devel oped rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I.A. Ibragi mov and Yu. V. I~innik, "Independent and Stationarily Connected VaTiables", which appeared in 1965, contains an exposition of the contem porary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distri buted random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and KolmogoTOv deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity
Book Synopsis A Weak Convergence Approach to the Theory of Large Deviations by : Paul Dupuis
Download or read book A Weak Convergence Approach to the Theory of Large Deviations written by Paul Dupuis and published by John Wiley & Sons. This book was released on 2011-09-09 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applies the well-developed tools of the theory of weak convergenceof probability measures to large deviation analysis--a consistentnew approach The theory of large deviations, one of the most dynamic topics inprobability today, studies rare events in stochastic systems. Thenonlinear nature of the theory contributes both to its richness anddifficulty. This innovative text demonstrates how to employ thewell-established linear techniques of weak convergence theory toprove large deviation results. Beginning with a step-by-stepdevelopment of the approach, the book skillfully guides readersthrough models of increasing complexity covering a wide variety ofrandom variable-level and process-level problems. Representationformulas for large deviation-type expectations are a key tool andare developed systematically for discrete-time problems. Accessible to anyone who has a knowledge of measure theory andmeasure-theoretic probability, A Weak Convergence Approach to theTheory of Large Deviations is important reading for both studentsand researchers.
Book Synopsis Martingale Limit Theory and Its Application by : P. Hall
Download or read book Martingale Limit Theory and Its Application written by P. Hall and published by Academic Press. This book was released on 2014-07-10 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics.
Book Synopsis The Art of Conjecturing, Together with Letter to a Friend on Sets in Court Tennis by : Jacob Bernoulli
Download or read book The Art of Conjecturing, Together with Letter to a Friend on Sets in Court Tennis written by Jacob Bernoulli and published by JHU Press. This book was released on 2006 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Part I reprints and reworks Huygens's On Reckoning in Games of Chance. Part II offers a thorough treatment of the mathematics of combinations and permutations, including the numbers since known as "Bernoulli numbers." In Part III, Bernoulli solves more complicated problems of games of chance using that mathematics. In the final part, Bernoulli's crowning achievement in mathematical probability becomes manifest he applies the mathematics of games of chance to the problems of epistemic probability in civil, moral, and economic matters, proving what we now know as the weak law of large numbers."
Book Synopsis A Course in Large Sample Theory by : Thomas S. Ferguson
Download or read book A Course in Large Sample Theory written by Thomas S. Ferguson and published by Routledge. This book was released on 2017-09-06 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Course in Large Sample Theory is presented in four parts. The first treats basic probabilistic notions, the second features the basic statistical tools for expanding the theory, the third contains special topics as applications of the general theory, and the fourth covers more standard statistical topics. Nearly all topics are covered in their multivariate setting.The book is intended as a first year graduate course in large sample theory for statisticians. It has been used by graduate students in statistics, biostatistics, mathematics, and related fields. Throughout the book there are many examples and exercises with solutions. It is an ideal text for self study.
Book Synopsis Introduction to Probability by : David F. Anderson
Download or read book Introduction to Probability written by David F. Anderson and published by Cambridge University Press. This book was released on 2017-11-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Book Synopsis An Introduction to Measure-theoretic Probability by : George G. Roussas
Download or read book An Introduction to Measure-theoretic Probability written by George G. Roussas and published by Gulf Professional Publishing. This book was released on 2005 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides in a concise, yet detailed way, the bulk of the probabilistic tools that a student working toward an advanced degree in statistics, probability and other related areas, should be equipped with. The approach is classical, avoiding the use of mathematical tools not necessary for carrying out the discussions. All proofs are presented in full detail. * Excellent exposition marked by a clear, coherent and logical devleopment of the subject * Easy to understand, detailed discussion of material * Complete proofs
Book Synopsis Probability: A Graduate Course by : Allan Gut
Download or read book Probability: A Graduate Course written by Allan Gut and published by Springer Science & Business Media. This book was released on 2006-03-16 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook on the theory of probability starts from the premise that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by explanations of the three main subjects in probability: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales.
Book Synopsis A Natural Introduction to Probability Theory by : R. Meester
Download or read book A Natural Introduction to Probability Theory written by R. Meester and published by Springer Science & Business Media. This book was released on 2008-03-16 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compactly written, but nevertheless very readable, appealing to intuition, this introduction to probability theory is an excellent textbook for a one-semester course for undergraduates in any direction that uses probabilistic ideas. Technical machinery is only introduced when necessary. The route is rigorous but does not use measure theory. The text is illustrated with many original and surprising examples and problems taken from classical applications like gambling, geometry or graph theory, as well as from applications in biology, medicine, social sciences, sports, and coding theory. Only first-year calculus is required.
Book Synopsis A Modern Introduction to Probability and Statistics by : F.M. Dekking
Download or read book A Modern Introduction to Probability and Statistics written by F.M. Dekking and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
Book Synopsis Introduction to Probability by : Dimitri Bertsekas
Download or read book Introduction to Probability written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2008-07-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.
Book Synopsis Discrete Stochastic Processes by : Robert G. Gallager
Download or read book Discrete Stochastic Processes written by Robert G. Gallager and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are found in probabilistic systems that evolve with time. Discrete stochastic processes change by only integer time steps (for some time scale), or are characterized by discrete occurrences at arbitrary times. Discrete Stochastic Processes helps the reader develop the understanding and intuition necessary to apply stochastic process theory in engineering, science and operations research. The book approaches the subject via many simple examples which build insight into the structure of stochastic processes and the general effect of these phenomena in real systems. The book presents mathematical ideas without recourse to measure theory, using only minimal mathematical analysis. In the proofs and explanations, clarity is favored over formal rigor, and simplicity over generality. Numerous examples are given to show how results fail to hold when all the conditions are not satisfied. Audience: An excellent textbook for a graduate level course in engineering and operations research. Also an invaluable reference for all those requiring a deeper understanding of the subject.
Book Synopsis Recent Developments in Applied Probability and Statistics by : Luc Devroye
Download or read book Recent Developments in Applied Probability and Statistics written by Luc Devroye and published by Springer Science & Business Media. This book was released on 2010-05-19 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to Professor Jürgen Lehn, who passed away on September 29, 2008, at the age of 67. It contains invited papers that were presented at the Wo- shop on Recent Developments in Applied Probability and Statistics Dedicated to the Memory of Professor Jürgen Lehn, Middle East Technical University (METU), Ankara, April 23–24, 2009, which was jointly organized by the Technische Univ- sität Darmstadt (TUD) and METU. The papers present surveys on recent devel- ments in the area of applied probability and statistics. In addition, papers from the Panel Discussion: Impact of Mathematics in Science, Technology and Economics are included. Jürgen Lehn was born on the 28th of April, 1941 in Karlsruhe. From 1961 to 1968 he studied mathematics in Freiburg and Karlsruhe, and obtained a Diploma in Mathematics from the University of Karlsruhe in 1968. He obtained his Ph.D. at the University of Regensburg in 1972, and his Habilitation at the University of Karlsruhe in 1978. Later in 1978, he became a C3 level professor of Mathematical Statistics at the University of Marburg. In 1980 he was promoted to a C4 level professorship in mathematics at the TUD where he was a researcher until his death.