Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
On Search Directions For Self Scaled Conic Programming
Download On Search Directions For Self Scaled Conic Programming full books in PDF, epub, and Kindle. Read online On Search Directions For Self Scaled Conic Programming ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis On Search Directions for Self-scaled Conic Programming by : Raphael Hauser (Andreas)
Download or read book On Search Directions for Self-scaled Conic Programming written by Raphael Hauser (Andreas) and published by . This book was released on 2000 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Interior-point Polynomial Algorithms in Convex Programming by : Yurii Nesterov
Download or read book Interior-point Polynomial Algorithms in Convex Programming written by Yurii Nesterov and published by SIAM. This book was released on 1994-01-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.
Book Synopsis Nonlinear Equations and Optimisation by : L.T. Watson
Download or read book Nonlinear Equations and Optimisation written by L.T. Watson and published by Gulf Professional Publishing. This book was released on 2001-03-28 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: After a review of historical developments in convergence analysis for Newton's and Newton-like methods, 18 papers deal in depth with various classical, or neo-classical approaches, as well as newer ideas on optimization and solving linear equations. A sampling of topics: truncated Newton methods, sequential quadratic programming for large- scale nonlinear optimization, and automatic differentiation of algorithms. This monograph, one of seven volumes in the set, is also published as the Journal of Computational and Applied Mathematics; v.124 (2000). Indexed only by author. c. Book News Inc.
Book Synopsis Handbook on Semidefinite, Conic and Polynomial Optimization by : Miguel F. Anjos
Download or read book Handbook on Semidefinite, Conic and Polynomial Optimization written by Miguel F. Anjos and published by Springer Science & Business Media. This book was released on 2011-11-19 with total page 955 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.
Book Synopsis System Modelling and Optimization by : M.J.D. Powell
Download or read book System Modelling and Optimization written by M.J.D. Powell and published by Springer. This book was released on 2013-03-20 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: System Modelling and Optimization covers research issues within systems theory, optimization, modelling, and computing. It includes contributions to structural mechanics, integer programming, nonlinear programming, interior point methods, dynamical systems, stability analysis, stochastic optimization, bilevel optimization, and semidefinite programming. Several survey papers written by leading experts in their fields complement new developments in theory and applications. This book contains most of the invited papers and a few carefully selected submitted papers that were presented at the 19th IFIP TC7 Conference on System Modelling and Optimization, which was held in Cambridge, England, from July 12 to 16, 1999, and sponsored by the International Federation for Information Processing (IFIP).
Book Synopsis Handbook of Semidefinite Programming by : Henry Wolkowicz
Download or read book Handbook of Semidefinite Programming written by Henry Wolkowicz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semidefinite programming (SDP) is one of the most exciting and active research areas in optimization. It has and continues to attract researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, control theory, and statistics. This tremendous research activity has been prompted by the discovery of important applications in combinatorial optimization and control theory, the development of efficient interior-point algorithms for solving SDP problems, and the depth and elegance of the underlying optimization theory. The Handbook of Semidefinite Programming offers an advanced and broad overview of the current state of the field. It contains nineteen chapters written by the leading experts on the subject. The chapters are organized in three parts: Theory, Algorithms, and Applications and Extensions.
Book Synopsis Primal-dual Interior-Point Methods by : Stephen J. Wright
Download or read book Primal-dual Interior-Point Methods written by Stephen J. Wright and published by SIAM. This book was released on 1997-01-01 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.
Book Synopsis Interior Point Methods for Linear Optimization by : Cornelis Roos
Download or read book Interior Point Methods for Linear Optimization written by Cornelis Roos and published by Springer Science & Business Media. This book was released on 2006-02-08 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.
Book Synopsis Interior Point Methods of Mathematical Programming by : Tamás Terlaky
Download or read book Interior Point Methods of Mathematical Programming written by Tamás Terlaky and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: One has to make everything as simple as possible but, never more simple. Albert Einstein Discovery consists of seeing what every body has seen and thinking what nobody has thought. Albert S. ent_Gyorgy; The primary goal of this book is to provide an introduction to the theory of Interior Point Methods (IPMs) in Mathematical Programming. At the same time, we try to present a quick overview of the impact of extensions of IPMs on smooth nonlinear optimization and to demonstrate the potential of IPMs for solving difficult practical problems. The Simplex Method has dominated the theory and practice of mathematical pro gramming since 1947 when Dantzig discovered it. In the fifties and sixties several attempts were made to develop alternative solution methods. At that time the prin cipal base of interior point methods was also developed, for example in the work of Frisch (1955), Caroll (1961), Huard (1967), Fiacco and McCormick (1968) and Dikin (1967). In 1972 Klee and Minty made explicit that in the worst case some variants of the simplex method may require an exponential amount of work to solve Linear Programming (LP) problems. This was at the time when complexity theory became a topic of great interest. People started to classify mathematical programming prob lems as efficiently (in polynomial time) solvable and as difficult (NP-hard) problems. For a while it remained open whether LP was solvable in polynomial time or not. The break-through resolution ofthis problem was obtained by Khachijan (1989).
Download or read book Self-Regularity written by Jiming Peng and published by Princeton University Press. This book was released on 2009-01-10 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on interior-point methods (IPMs) has dominated the field of mathematical programming for the last two decades. Two contrasting approaches in the analysis and implementation of IPMs are the so-called small-update and large-update methods, although, until now, there has been a notorious gap between the theory and practical performance of these two strategies. This book comes close to bridging that gap, presenting a new framework for the theory of primal-dual IPMs based on the notion of the self-regularity of a function. The authors deal with linear optimization, nonlinear complementarity problems, semidefinite optimization, and second-order conic optimization problems. The framework also covers large classes of linear complementarity problems and convex optimization. The algorithm considered can be interpreted as a path-following method or a potential reduction method. Starting from a primal-dual strictly feasible point, the algorithm chooses a search direction defined by some Newton-type system derived from the self-regular proximity. The iterate is then updated, with the iterates staying in a certain neighborhood of the central path until an approximate solution to the problem is found. By extensively exploring some intriguing properties of self-regular functions, the authors establish that the complexity of large-update IPMs can come arbitrarily close to the best known iteration bounds of IPMs. Researchers and postgraduate students in all areas of linear and nonlinear optimization will find this book an important and invaluable aid to their work.
Book Synopsis Interior Point Algorithms by : Yinyu Ye
Download or read book Interior Point Algorithms written by Yinyu Ye and published by John Wiley & Sons. This book was released on 2011-10-11 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive review of the theory and practice of one oftoday's most powerful optimization techniques. The explosive growth of research into and development of interiorpoint algorithms over the past two decades has significantlyimproved the complexity of linear programming and yielded some oftoday's most sophisticated computing techniques. This book offers acomprehensive and thorough treatment of the theory, analysis, andimplementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basicand advanced aspects of the subject. Beginning with an overview offundamental mathematical procedures, Professor Yinyu Ye movesswiftly on to in-depth explorations of numerous computationalproblems and the algorithms that have been developed to solve them.An indispensable text/reference for students and researchers inapplied mathematics, computer science, operations research,management science, and engineering, Interior Point Algorithms: * Derives various complexity results for linear and convexprogramming * Emphasizes interior point geometry and potential theory * Covers state-of-the-art results for extension, implementation,and other cutting-edge computational techniques * Explores the hottest new research topics, including nonlinearprogramming and nonconvex optimization.
Book Synopsis Future Intelligent Information Systems by : Dehuai Zheng
Download or read book Future Intelligent Information Systems written by Dehuai Zheng and published by Springer Science & Business Media. This book was released on 2011-04-06 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2010 First International Conference on Electrical and Electronics Engineering was held in Wuhan, China, December 4-5. Future Intelligent Information Systems book contains eighty-five revised and extended research articles written by prominent researchers participating in the conference. Topics covered include Tools and Methods of AI, Knowledge Discovery, Information Management and knowledge sharing, intelligent e-Technology, Information systems governance, and Informatics in Control. Intelligent Information System will offer the state of art of tremendous advances in Intelligent Information System and also serve as an excellent reference work for researchers and graduate students working with/on Intelligent Information System.
Book Synopsis Acta Numerica 2001: Volume 10 by : Arieh Iserles
Download or read book Acta Numerica 2001: Volume 10 written by Arieh Iserles and published by Cambridge University Press. This book was released on 2001-08-23 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: An annual volume presenting substantive survey articles in numerical analysis and scientific computing.
Book Synopsis Advances in Neural Networks -- ISNN 2010 by : James Kwok
Download or read book Advances in Neural Networks -- ISNN 2010 written by James Kwok and published by Springer. This book was released on 2010-05-30 with total page 787 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book and its sister volume collect refereed papers presented at the 7th Inter- tional Symposium on Neural Networks (ISNN 2010), held in Shanghai, China, June 6-9, 2010. Building on the success of the previous six successive ISNN symposiums, ISNN has become a well-established series of popular and high-quality conferences on neural computation and its applications. ISNN aims at providing a platform for scientists, researchers, engineers, as well as students to gather together to present and discuss the latest progresses in neural networks, and applications in diverse areas. Nowadays, the field of neural networks has been fostered far beyond the traditional artificial neural networks. This year, ISNN 2010 received 591 submissions from more than 40 countries and regions. Based on rigorous reviews, 170 papers were selected for publication in the proceedings. The papers collected in the proceedings cover a broad spectrum of fields, ranging from neurophysiological experiments, neural modeling to extensions and applications of neural networks. We have organized the papers into two volumes based on their topics. The first volume, entitled “Advances in Neural Networks- ISNN 2010, Part 1,” covers the following topics: neurophysiological foundation, theory and models, learning and inference, neurodynamics. The second volume en- tled “Advance in Neural Networks ISNN 2010, Part 2” covers the following five topics: SVM and kernel methods, vision and image, data mining and text analysis, BCI and brain imaging, and applications.
Book Synopsis High Performance Optimization by : Hans Frenk
Download or read book High Performance Optimization written by Hans Frenk and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a long time the techniques of solving linear optimization (LP) problems improved only marginally. Fifteen years ago, however, a revolutionary discovery changed everything. A new `golden age' for optimization started, which is continuing up to the current time. What is the cause of the excitement? Techniques of linear programming formed previously an isolated body of knowledge. Then suddenly a tunnel was built linking it with a rich and promising land, part of which was already cultivated, part of which was completely unexplored. These revolutionary new techniques are now applied to solve conic linear problems. This makes it possible to model and solve large classes of essentially nonlinear optimization problems as efficiently as LP problems. This volume gives an overview of the latest developments of such `High Performance Optimization Techniques'. The first part is a thorough treatment of interior point methods for semidefinite programming problems. The second part reviews today's most exciting research topics and results in the area of convex optimization. Audience: This volume is for graduate students and researchers who are interested in modern optimization techniques.
Book Synopsis Practical Optimization by : Andreas Antoniou
Download or read book Practical Optimization written by Andreas Antoniou and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Optimization: Algorithms and Engineering Applications is a hands-on treatment of the subject of optimization. A comprehensive set of problems and exercises makes the book suitable for use in one or two semesters of a first-year graduate course or an advanced undergraduate course. Each half of the book contains a full semester’s worth of complementary yet stand-alone material. The practical orientation of the topics chosen and a wealth of useful examples also make the book suitable for practitioners in the field.
Book Synopsis Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers by : Stephen Boyd
Download or read book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers written by Stephen Boyd and published by Now Publishers Inc. This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.