Foundations of Hyperbolic Manifolds

Download Foundations of Hyperbolic Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475740131
Total Pages : 761 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Hyperbolic Manifolds by : John Ratcliffe

Download or read book Foundations of Hyperbolic Manifolds written by John Ratcliffe and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.

Hyperbolic Complex Spaces

Download Hyperbolic Complex Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662035820
Total Pages : 480 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Hyperbolic Complex Spaces by : Shoshichi Kobayashi

Download or read book Hyperbolic Complex Spaces written by Shoshichi Kobayashi and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the three decades since the introduction of the Kobayashi distance, the subject of hyperbolic complex spaces and holomorphic mappings has grown to be a big industry. This book gives a comprehensive and systematic account on the Carathéodory and Kobayashi distances, hyperbolic complex spaces and holomorphic mappings with geometric methods. A very complete list of references should be useful for prospective researchers in this area.

Complex Geometry

Download Complex Geometry PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780824788186
Total Pages : 250 pages
Book Rating : 4.7/5 (881 download)

DOWNLOAD NOW!


Book Synopsis Complex Geometry by : G. Komatsu

Download or read book Complex Geometry written by G. Komatsu and published by CRC Press. This book was released on 1992-11-19 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the proceedings of an international conference on complex geometry and related topics, held in commemoration of the 50th anniversary of Osaka University, Osaka, Japan. The text focuses on the CR invariants, hyperbolic geometry, Yamabe-type problems, and harmonic maps.

Hyperbolic Manifolds and Discrete Groups

Download Hyperbolic Manifolds and Discrete Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817649131
Total Pages : 486 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Hyperbolic Manifolds and Discrete Groups by : Michael Kapovich

Download or read book Hyperbolic Manifolds and Discrete Groups written by Michael Kapovich and published by Springer Science & Business Media. This book was released on 2009-08-04 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.

Hyperbolic Manifolds and Holomorphic Mappings

Download Hyperbolic Manifolds and Holomorphic Mappings PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812564969
Total Pages : 161 pages
Book Rating : 4.8/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Hyperbolic Manifolds and Holomorphic Mappings by : Shoshichi Kobayashi

Download or read book Hyperbolic Manifolds and Holomorphic Mappings written by Shoshichi Kobayashi and published by World Scientific. This book was released on 2005 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections ?invariant metrics and pseudo-distances? and ?hyperbolic complex manifolds? within the section ?holomorphic mappings?. The invariant distance introduced in the first edition is now called the ?Kobayashi distance?, and the hyperbolicity in the sense of this book is called the ?Kobayashi hyperbolicity? to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.

Compact Complex Surfaces

Download Compact Complex Surfaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642577393
Total Pages : 439 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Compact Complex Surfaces by : W. Barth

Download or read book Compact Complex Surfaces written by W. Barth and published by Springer. This book was released on 2015-05-22 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the 19 years which passed since the first edition was published, several important developments have taken place in the theory of surfaces. The most sensational one concerns the differentiable structure of surfaces. Twenty years ago very little was known about differentiable structures on 4-manifolds, but in the meantime Donaldson on the one hand and Seiberg and Witten on the other hand, have found, inspired by gauge theory, totally new invariants. Strikingly, together with the theory explained in this book these invariants yield a wealth of new results about the differentiable structure of algebraic surfaces. Other developments include the systematic use of nef-divisors (in ac cordance with the progress made in the classification of higher dimensional algebraic varieties), a better understanding of Kahler structures on surfaces, and Reider's new approach to adjoint mappings. All these developments have been incorporated in the present edition, though the Donaldson and Seiberg-Witten theory only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom we are much obliged.

Foliations and the Geometry of 3-Manifolds

Download Foliations and the Geometry of 3-Manifolds PDF Online Free

Author :
Publisher : Oxford University Press on Demand
ISBN 13 : 0198570082
Total Pages : 378 pages
Book Rating : 4.1/5 (985 download)

DOWNLOAD NOW!


Book Synopsis Foliations and the Geometry of 3-Manifolds by : Danny Calegari

Download or read book Foliations and the Geometry of 3-Manifolds written by Danny Calegari and published by Oxford University Press on Demand. This book was released on 2007-05-17 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.

Geometry and Analysis on Manifolds

Download Geometry and Analysis on Manifolds PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319115235
Total Pages : 473 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Analysis on Manifolds by : Takushiro Ochiai

Download or read book Geometry and Analysis on Manifolds written by Takushiro Ochiai and published by Springer. This book was released on 2015-02-25 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi’s career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kähler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables geometry, as well as to graduate students in mathematics.

Elliptic Curves

Download Elliptic Curves PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662070103
Total Pages : 270 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Curves by : S. Lang

Download or read book Elliptic Curves written by S. Lang and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diophantine approximation both on the multiplicative group and on the elliptic curve directly. Thus the book splits naturally in two parts. The first part deals with the ordinary arithmetic of the elliptic curve: The transcendental parametrization, the p-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points.

The Geometry and Topology of Three-Manifolds

Download The Geometry and Topology of Three-Manifolds PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470474743
Total Pages : 337 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis The Geometry and Topology of Three-Manifolds by : William P. Thurston

Download or read book The Geometry and Topology of Three-Manifolds written by William P. Thurston and published by American Mathematical Society. This book was released on 2023-06-16 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume IV contains Thurston's highly influential, though previously unpublished, 1977–78 Princeton Course Notes on the Geometry and Topology of 3-manifolds. It is an indispensable part of the Thurston collection but can also be used on its own as a textbook or for self-study.

An Introduction to the Kähler-Ricci Flow

Download An Introduction to the Kähler-Ricci Flow PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319008196
Total Pages : 342 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Kähler-Ricci Flow by : Sebastien Boucksom

Download or read book An Introduction to the Kähler-Ricci Flow written by Sebastien Boucksom and published by Springer. This book was released on 2013-10-02 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.

Fundamentals of Hyperbolic Manifolds

Download Fundamentals of Hyperbolic Manifolds PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9781139447195
Total Pages : 356 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Hyperbolic Manifolds by : R. D. Canary

Download or read book Fundamentals of Hyperbolic Manifolds written by R. D. Canary and published by Cambridge University Press. This book was released on 2006-04-13 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.

Lectures on Hyperbolic Geometry

Download Lectures on Hyperbolic Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642581587
Total Pages : 343 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Hyperbolic Geometry by : Riccardo Benedetti

Download or read book Lectures on Hyperbolic Geometry written by Riccardo Benedetti and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focussing on the geometry of hyperbolic manifolds, the aim here is to provide an exposition of some fundamental results, while being as self-contained, complete, detailed and unified as possible. Following some classical material on the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (including a complete proof, following Gromov and Thurston) and Margulis' lemma. These then form the basis for studying Chabauty and geometric topology; a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory; and much space is devoted to the 3D case: a complete and elementary proof of the hyperbolic surgery theorem, based on the representation of three manifolds as glued ideal tetrahedra.

Geometry and Dynamics in Gromov Hyperbolic Metric Spaces

Download Geometry and Dynamics in Gromov Hyperbolic Metric Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470434652
Total Pages : 321 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Dynamics in Gromov Hyperbolic Metric Spaces by : Tushar Das

Download or read book Geometry and Dynamics in Gromov Hyperbolic Metric Spaces written by Tushar Das and published by American Mathematical Soc.. This book was released on 2017-04-14 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the foundations of the theory of groups and semigroups acting isometrically on Gromov hyperbolic metric spaces. Particular emphasis is paid to the geometry of their limit sets and on behavior not found in the proper setting. The authors provide a number of examples of groups which exhibit a wide range of phenomena not to be found in the finite-dimensional theory. The book contains both introductory material to help beginners as well as new research results, and closes with a list of attractive unsolved problems.

Algebraic Geometry Santa Cruz 1995

Download Algebraic Geometry Santa Cruz 1995 PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821808958
Total Pages : 473 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry Santa Cruz 1995 by : János Kollár

Download or read book Algebraic Geometry Santa Cruz 1995 written by János Kollár and published by American Mathematical Soc.. This book was released on 1997 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometric Function Theory in Several Complex Variables

Download Geometric Function Theory in Several Complex Variables PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821845332
Total Pages : 292 pages
Book Rating : 4.8/5 (453 download)

DOWNLOAD NOW!


Book Synopsis Geometric Function Theory in Several Complex Variables by : Junjirō Noguchi

Download or read book Geometric Function Theory in Several Complex Variables written by Junjirō Noguchi and published by American Mathematical Soc.. This book was released on 1990 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: An English translation of a book that first appeared in Japanese. It provides an account of recent developments in geometric function theory in several complex variables and presents fundamental descriptions of positive currents, plurisubharmonic functions and meromorphic mappings.

Locally Mixed Symmetric Spaces

Download Locally Mixed Symmetric Spaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030698041
Total Pages : 622 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Locally Mixed Symmetric Spaces by : Bruce Hunt

Download or read book Locally Mixed Symmetric Spaces written by Bruce Hunt and published by Springer Nature. This book was released on 2021-09-04 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: What do the classification of algebraic surfaces, Weyl's dimension formula and maximal orders in central simple algebras have in common? All are related to a type of manifold called locally mixed symmetric spaces in this book. The presentation emphasizes geometric concepts and relations and gives each reader the "roter Faden", starting from the basics and proceeding towards quite advanced topics which lie at the intersection of differential and algebraic geometry, algebra and topology. Avoiding technicalities and assuming only a working knowledge of real Lie groups, the text provides a wealth of examples of symmetric spaces. The last two chapters deal with one particular case (Kuga fiber spaces) and a generalization (elliptic surfaces), both of which require some knowledge of algebraic geometry. Of interest to topologists, differential or algebraic geometers working in areas related to arithmetic groups, the book also offers an introduction to the ideas for non-experts.