Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
On First And Second Order Planar Elliptic Equations With Degeneracies
Download On First And Second Order Planar Elliptic Equations With Degeneracies full books in PDF, epub, and Kindle. Read online On First And Second Order Planar Elliptic Equations With Degeneracies ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis On First and Second Order Planar Elliptic Equations with Degeneracies by : Abdelhamid Meziani
Download or read book On First and Second Order Planar Elliptic Equations with Degeneracies written by Abdelhamid Meziani and published by American Mathematical Soc.. This book was released on 2012 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper deals with elliptic equations in the plane with degeneracies. The equations are generated by a complex vector field that is elliptic everywhere except along a simple closed curve. Kernels for these equations are constructed. Properties of solutions, in a neighborhood of the degeneracy curve, are obtained through integral and series representations. An application to a second order elliptic equation with a punctual singularity is given.
Book Synopsis On First and Second Order Planar Elliptic Equations with Degeneracies by : Abdelhamid Meziani
Download or read book On First and Second Order Planar Elliptic Equations with Degeneracies written by Abdelhamid Meziani and published by . This book was released on 2011 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper deals with elliptic equations in the plane with degeneracies. The equations are generated by a complex vector field that is elliptic everywhere except along a simple closed curve. Kernels for these equations are constructed. Properties of solutions, in a neighborhood of the degeneracy curve, are obtained through integral and series representations. An application to a second order elliptic equation with a punctual singularity is given.
Book Synopsis The Kohn-Sham Equation for Deformed Crystals by : Weinan E
Download or read book The Kohn-Sham Equation for Deformed Crystals written by Weinan E and published by American Mathematical Soc.. This book was released on 2013-01-25 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: The solution to the Kohn-Sham equation in the density functional theory of the quantum many-body problem is studied in the context of the electronic structure of smoothly deformed macroscopic crystals. An analog of the classical Cauchy-Born rule for crystal lattices is established for the electronic structure of the deformed crystal under the following physical conditions: (1) the band structure of the undeformed crystal has a gap, i.e. the crystal is an insulator, (2) the charge density waves are stable, and (3) the macroscopic dielectric tensor is positive definite. The effective equation governing the piezoelectric effect of a material is rigorously derived. Along the way, the authors also establish a number of fundamental properties of the Kohn-Sham map.
Book Synopsis Elliptic Integrable Systems by : Idrisse Khemar
Download or read book Elliptic Integrable Systems written by Idrisse Khemar and published by American Mathematical Soc.. This book was released on 2012 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, the author studies all the elliptic integrable systems, in the sense of C, that is to say, the family of all the $m$-th elliptic integrable systems associated to a $k^\prime$-symmetric space $N=G/G_0$. The author describes the geometry behind this family of integrable systems for which we know how to construct (at least locally) all the solutions. The introduction gives an overview of all the main results, as well as some related subjects and works, and some additional motivations.
Book Synopsis The Regularity of General Parabolic Systems with Degenerate Diffusion by : Verena Bögelein
Download or read book The Regularity of General Parabolic Systems with Degenerate Diffusion written by Verena Bögelein and published by American Mathematical Soc.. This book was released on 2013-01-28 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the paper is twofold. On one hand the authors want to present a new technique called $p$-caloric approximation, which is a proper generalization of the classical compactness methods first developed by DeGiorgi with his Harmonic Approximation Lemma. This last result, initially introduced in the setting of Geometric Measure Theory to prove the regularity of minimal surfaces, is nowadays a classical tool to prove linearization and regularity results for vectorial problems. Here the authors develop a very far reaching version of this general principle devised to linearize general degenerate parabolic systems. The use of this result in turn allows the authors to achieve the subsequent and main aim of the paper, that is, the implementation of a partial regularity theory for parabolic systems with degenerate diffusion of the type $\partial_t u - \mathrm{div} a(Du)=0$, without necessarily assuming a quasi-diagonal structure, i.e. a structure prescribing that the gradient non-linearities depend only on the the explicit scalar quantity.
Book Synopsis Zeta Functions for Two-Dimensional Shifts of Finite Type by : Jung-Chao Ban
Download or read book Zeta Functions for Two-Dimensional Shifts of Finite Type written by Jung-Chao Ban and published by American Mathematical Soc.. This book was released on 2013-01-25 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is concerned with zeta functions of two-dimensional shifts of finite type. A two-dimensional zeta function $\zeta^{0}(s)$, which generalizes the Artin-Mazur zeta function, was given by Lind for $\mathbb{Z}^{2}$-action $\phi$. In this paper, the $n$th-order zeta function $\zeta_{n}$ of $\phi$ on $\mathbb{Z}_{n\times \infty}$, $n\geq 1$, is studied first. The trace operator $\mathbf{T}_{n}$, which is the transition matrix for $x$-periodic patterns with period $n$ and height $2$, is rotationally symmetric. The rotational symmetry of $\mathbf{T}_{n}$ induces the reduced trace operator $\tau_{n}$ and $\zeta_{n}=\left(\det\left(I-s^{n}\tau_{n}\right)\right)^{-1}$. The zeta function $\zeta=\prod_{n=1}^{\infty} \left(\det\left(I-s^{n}\tau_{n}\right)\right)^{-1}$ in the $x$-direction is now a reciprocal of an infinite product of polynomials. The zeta function can be presented in the $y$-direction and in the coordinates of any unimodular transformation in $GL_{2}(\mathbb{Z})$. Therefore, there exists a family of zeta functions that are meromorphic extensions of the same analytic function $\zeta^{0}(s)$. The natural boundary of zeta functions is studied. The Taylor series for these zeta functions at the origin are equal with integer coefficients, yielding a family of identities, which are of interest in number theory. The method applies to thermodynamic zeta functions for the Ising model with finite range interactions.
Book Synopsis Characterization and Topological Rigidity of Nobeling Manifolds by : Andrzej Nagórko
Download or read book Characterization and Topological Rigidity of Nobeling Manifolds written by Andrzej Nagórko and published by American Mathematical Soc.. This book was released on 2013-04-22 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author develops a theory of Nobeling manifolds similar to the theory of Hilbert space manifolds. He shows that it reflects the theory of Menger manifolds developed by M. Bestvina and is its counterpart in the realm of complete spaces. In particular the author proves the Nobeling manifold characterization conjecture.
Book Synopsis The Poset of $k$-Shapes and Branching Rules for $k$-Schur Functions by : Thomas Lam
Download or read book The Poset of $k$-Shapes and Branching Rules for $k$-Schur Functions written by Thomas Lam and published by American Mathematical Soc.. This book was released on 2013-04-22 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors give a combinatorial expansion of a Schubert homology class in the affine Grassmannian $\mathrm{Gr}_{\mathrm{SL}_k}$ into Schubert homology classes in $\mathrm{Gr}_{\mathrm{SL}_{k+1}}$. This is achieved by studying the combinatorics of a new class of partitions called $k$-shapes, which interpolates between $k$-cores and $k+1$-cores. The authors define a symmetric function for each $k$-shape, and show that they expand positively in terms of dual $k$-Schur functions. They obtain an explicit combinatorial description of the expansion of an ungraded $k$-Schur function into $k+1$-Schur functions. As a corollary, they give a formula for the Schur expansion of an ungraded $k$-Schur function.
Book Synopsis The Reductive Subgroups of $F_4$ by : David I. Stewart
Download or read book The Reductive Subgroups of $F_4$ written by David I. Stewart and published by American Mathematical Soc.. This book was released on 2013-04-22 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $G=G(K)$ be a simple algebraic group defined over an algebraically closed field $K$ of characteristic $p\geq 0$. A subgroup $X$ of $G$ is said to be $G$-completely reducible if, whenever it is contained in a parabolic subgroup of $G$, it is contained in a Levi subgroup of that parabolic. A subgroup $X$ of $G$ is said to be $G$-irreducible if $X$ is in no proper parabolic subgroup of $G$; and $G$-reducible if it is in some proper parabolic of $G$. In this paper, the author considers the case that $G=F_4(K)$. The author finds all conjugacy classes of closed, connected, semisimple $G$-reducible subgroups $X$ of $G$. Thus he also finds all non-$G$-completely reducible closed, connected, semisimple subgroups of $G$. When $X$ is closed, connected and simple of rank at least two, he finds all conjugacy classes of $G$-irreducible subgroups $X$ of $G$. Together with the work of Amende classifying irreducible subgroups of type $A_1$ this gives a complete classification of the simple subgroups of $G$. The author also uses this classification to find all subgroups of $G=F_4$ which are generated by short root elements of $G$, by utilising and extending the results of Liebeck and Seitz.
Book Synopsis Pseudo-Differential Operators with Discontinuous Symbols: Widom's Conjecture by : Aleksandr Vladimirovich Sobolev
Download or read book Pseudo-Differential Operators with Discontinuous Symbols: Widom's Conjecture written by Aleksandr Vladimirovich Sobolev and published by American Mathematical Soc.. This book was released on 2013-02-26 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relying on the known two-term quasiclassical asymptotic formula for the trace of the function $f(A)$ of a Wiener-Hopf type operator $A$ in dimension one, in 1982 H. Widom conjectured a multi-dimensional generalization of that formula for a pseudo-differential operator $A$ with a symbol $a(\mathbf{x}, \boldsymbol{\xi})$ having jump discontinuities in both variables. In 1990 he proved the conjecture for the special case when the jump in any of the two variables occurs on a hyperplane. The present paper provides a proof of Widom's Conjecture under the assumption that the symbol has jumps in both variables on arbitrary smooth bounded surfaces.
Book Synopsis Character Identities in the Twisted Endoscopy of Real Reductive Groups by : Paul Mezo
Download or read book Character Identities in the Twisted Endoscopy of Real Reductive Groups written by Paul Mezo and published by American Mathematical Soc.. This book was released on 2013-02-26 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suppose $G$ is a real reductive algebraic group, $\theta$ is an automorphism of $G$, and $\omega$ is a quasicharacter of the group of real points $G(\mathbf{R})$. Under some additional assumptions, the theory of twisted endoscopy associates to this triple real reductive groups $H$. The Local Langlands Correspondence partitions the admissible representations of $H(\mathbf{R})$ and $G(\mathbf{R})$ into $L$-packets. The author proves twisted character identities between $L$-packets of $H(\mathbf{R})$ and $G(\mathbf{R})$ comprised of essential discrete series or limits of discrete series.
Book Synopsis A Study of Singularities on Rational Curves Via Syzygies by : David A. Cox
Download or read book A Study of Singularities on Rational Curves Via Syzygies written by David A. Cox and published by American Mathematical Soc.. This book was released on 2013-02-26 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Consider a rational projective curve $\mathcal{C}$ of degree $d$ over an algebraically closed field $\pmb k$. There are $n$ homogeneous forms $g_{1},\dots, g_{n}$ of degree $d$ in $B=\pmb k[x, y]$ which parameterize $\mathcal{C}$ in a birational, base point free, manner. The authors study the singularities of $\mathcal{C}$ by studying a Hilbert-Burch matrix $\varphi$ for the row vector $[g_{1},\dots, g_{n}]$. In the ``General Lemma'' the authors use the generalized row ideals of $\varphi$ to identify the singular points on $\mathcal{C}$, their multiplicities, the number of branches at each singular point, and the multiplicity of each branch. Let $p$ be a singular point on the parameterized planar curve $\mathcal{C}$ which corresponds to a generalized zero of $\varphi$. In the `'triple Lemma'' the authors give a matrix $\varphi'$ whose maximal minors parameterize the closure, in $\mathbb{P}^{2}$, of the blow-up at $p$ of $\mathcal{C}$ in a neighborhood of $p$. The authors apply the General Lemma to $\varphi'$ in order to learn about the singularities of $\mathcal{C}$ in the first neighborhood of $p$. If $\mathcal{C}$ has even degree $d=2c$ and the multiplicity of $\mathcal{C}$ at $p$ is equal to $c$, then he applies the Triple Lemma again to learn about the singularities of $\mathcal{C}$ in the second neighborhood of $p$. Consider rational plane curves $\mathcal{C}$ of even degree $d=2c$. The authors classify curves according to the configuration of multiplicity $c$ singularities on or infinitely near $\mathcal{C}$. There are $7$ possible configurations of such singularities. They classify the Hilbert-Burch matrix which corresponds to each configuration. The study of multiplicity $c$ singularities on, or infinitely near, a fixed rational plane curve $\mathcal{C}$ of degree $2c$ is equivalent to the study of the scheme of generalized zeros of the fixed balanced Hilbert-Burch matrix $\varphi$ for a parameterization of $\mathcal{C}$.
Book Synopsis Connes-Chern Character for Manifolds with Boundary and Eta Cochains by : Matthias Lesch
Download or read book Connes-Chern Character for Manifolds with Boundary and Eta Cochains written by Matthias Lesch and published by American Mathematical Soc.. This book was released on 2012 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: "November 2012, volume 220, number (end of volume)."
Book Synopsis A Mutation-Selection Model with Recombination for General Genotypes by : Steven Neil Evans
Download or read book A Mutation-Selection Model with Recombination for General Genotypes written by Steven Neil Evans and published by American Mathematical Soc.. This book was released on 2013-02-26 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors investigate a continuous time, probability measure-valued dynamical system that describes the process of mutation-selection balance in a context where the population is infinite, there may be infinitely many loci, and there are weak assumptions on selective costs. Their model arises when they incorporate very general recombination mechanisms into an earlier model of mutation and selection presented by Steinsaltz, Evans and Wachter in 2005 and take the relative strength of mutation and selection to be sufficiently small. The resulting dynamical system is a flow of measures on the space of loci. Each such measure is the intensity measure of a Poisson random measure on the space of loci: the points of a realization of the random measure record the set of loci at which the genotype of a uniformly chosen individual differs from a reference wild type due to an accumulation of ancestral mutations. The authors' motivation for working in such a general setting is to provide a basis for understanding mutation-driven changes in age-specific demographic schedules that arise from the complex interaction of many genes, and hence to develop a framework for understanding the evolution of aging.
Book Synopsis Modular Branching Rules for Projective Representations of Symmetric Groups and Lowering Operators for the Supergroup $Q(n)$ by : Aleksandr Sergeevich Kleshchëv
Download or read book Modular Branching Rules for Projective Representations of Symmetric Groups and Lowering Operators for the Supergroup $Q(n)$ written by Aleksandr Sergeevich Kleshchëv and published by American Mathematical Soc.. This book was released on 2012 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are two approaches to projective representation theory of symmetric and alternating groups, which are powerful enough to work for modular representations. One is based on Sergeev duality, which connects projective representation theory of the symmetric group and representation theory of the algebraic supergroup $Q(n)$ via appropriate Schur (super)algebras and Schur functors. The second approach follows the work of Grojnowski for classical affine and cyclotomic Hecke algebras and connects projective representation theory of symmetric groups in characteristic $p$ to the crystal graph of the basic module of the twisted affine Kac-Moody algebra of type $A_{p-1}^{(2)}$. The goal of this work is to connect the two approaches mentioned above and to obtain new branching results for projective representations of symmetric groups.
Book Synopsis Potential Wadge Classes by : Dominique Lecomte
Download or read book Potential Wadge Classes written by Dominique Lecomte and published by American Mathematical Soc.. This book was released on 2013-01-25 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $\bf\Gamma$ be a Borel class, or a Wadge class of Borel sets, and $2\!\leq\! d\!\leq\!\omega$ be a cardinal. A Borel subset $B$ of ${\mathbb R}^d$ is potentially in $\bf\Gamma$ if there is a finer Polish topology on $\mathbb R$ such that $B$ is in $\bf\Gamma$ when ${\mathbb R}^d$ is equipped with the new product topology. The author provides a way to recognize the sets potentially in $\bf\Gamma$ and applies this to the classes of graphs (oriented or not), quasi-orders and partial orders.