Time-dependent Partial Differential Equations and Their Numerical Solution

Download Time-dependent Partial Differential Equations and Their Numerical Solution PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783764361259
Total Pages : 100 pages
Book Rating : 4.3/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Time-dependent Partial Differential Equations and Their Numerical Solution by : Heinz-Otto Kreiss

Download or read book Time-dependent Partial Differential Equations and Their Numerical Solution written by Heinz-Otto Kreiss and published by Springer Science & Business Media. This book was released on 2001-04-01 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies time-dependent partial differential equations and their numerical solution, developing the analytic and the numerical theory in parallel, and placing special emphasis on the discretization of boundary conditions. The theoretical results are then applied to Newtonian and non-Newtonian flows, two-phase flows and geophysical problems. This book will be a useful introduction to the field for applied mathematicians and graduate students.

Time-Dependent Problems and Difference Methods

Download Time-Dependent Problems and Difference Methods PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118548523
Total Pages : 464 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Time-Dependent Problems and Difference Methods by : Bertil Gustafsson

Download or read book Time-Dependent Problems and Difference Methods written by Bertil Gustafsson and published by John Wiley & Sons. This book was released on 2013-07-18 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.

High Order Difference Methods for Time Dependent PDE

Download High Order Difference Methods for Time Dependent PDE PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540749934
Total Pages : 343 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis High Order Difference Methods for Time Dependent PDE by : Bertil Gustafsson

Download or read book High Order Difference Methods for Time Dependent PDE written by Bertil Gustafsson and published by Springer Science & Business Media. This book was released on 2007-12-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers high order finite difference methods for time dependent PDE. It gives an overview of the basic theory and construction principles by using model examples. The book also contains a general presentation of the techniques and results for well-posedness and stability, with inclusion of the three fundamental methods of analysis both for PDE in its original and discretized form: the Fourier transform, the eneregy method and the Laplace transform.

Finite Difference Methods for Ordinary and Partial Differential Equations

Download Finite Difference Methods for Ordinary and Partial Differential Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898717839
Total Pages : 356 pages
Book Rating : 4.7/5 (178 download)

DOWNLOAD NOW!


Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Partial Differential Equations with Numerical Methods

Download Partial Differential Equations with Numerical Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540887059
Total Pages : 263 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations with Numerical Methods by : Stig Larsson

Download or read book Partial Differential Equations with Numerical Methods written by Stig Larsson and published by Springer Science & Business Media. This book was released on 2008-12-05 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations

Download Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662090171
Total Pages : 479 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations by : Willem Hundsdorfer

Download or read book Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations written by Willem Hundsdorfer and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unique book on Reaction-Advection-Diffusion problems

Numerical Solution of Partial Differential Equations by the Finite Element Method

Download Numerical Solution of Partial Differential Equations by the Finite Element Method PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486131599
Total Pages : 290 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Numerical Solution of Partial Differential Equations by the Finite Element Method by : Claes Johnson

Download or read book Numerical Solution of Partial Differential Equations by the Finite Element Method written by Claes Johnson and published by Courier Corporation. This book was released on 2012-05-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Numerical Approximation of Partial Differential Equations

Download Numerical Approximation of Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540852689
Total Pages : 551 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Numerical Approximation of Partial Differential Equations by : Alfio Quarteroni

Download or read book Numerical Approximation of Partial Differential Equations written by Alfio Quarteroni and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).

Numerical Methods for Partial Differential Equations

Download Numerical Methods for Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119111366
Total Pages : 376 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Partial Differential Equations by : Vitoriano Ruas

Download or read book Numerical Methods for Partial Differential Equations written by Vitoriano Ruas and published by John Wiley & Sons. This book was released on 2016-04-28 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Partial Differential Equations: An Introduction Vitoriano Ruas, Sorbonne Universités, UPMC - Université Paris 6, France A comprehensive overview of techniques for the computational solution of PDE's Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified. Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDE’s. Key features: A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use New techniques are employed to derive known results, thereby simplifying their proof Supplementary material is available from a companion website.

Numerical Methods for Solving Partial Differential Equations

Download Numerical Methods for Solving Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119316383
Total Pages : 414 pages
Book Rating : 4.1/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Solving Partial Differential Equations by : George F. Pinder

Download or read book Numerical Methods for Solving Partial Differential Equations written by George F. Pinder and published by John Wiley & Sons. This book was released on 2018-02-05 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.

Numerical Analysis of Partial Differential Equations

Download Numerical Analysis of Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118111117
Total Pages : 506 pages
Book Rating : 4.1/5 (181 download)

DOWNLOAD NOW!


Book Synopsis Numerical Analysis of Partial Differential Equations by : S. H, Lui

Download or read book Numerical Analysis of Partial Differential Equations written by S. H, Lui and published by John Wiley & Sons. This book was released on 2012-01-10 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.

Numerical Methods for Evolutionary Differential Equations

Download Numerical Methods for Evolutionary Differential Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898716527
Total Pages : 403 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Evolutionary Differential Equations by : Uri M. Ascher

Download or read book Numerical Methods for Evolutionary Differential Equations written by Uri M. Ascher and published by SIAM. This book was released on 2008-09-04 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops, analyses, and applies numerical methods for evolutionary, or time-dependent, differential problems.

PETSc for Partial Differential Equations: Numerical Solutions in C and Python

Download PETSc for Partial Differential Equations: Numerical Solutions in C and Python PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611976316
Total Pages : 407 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis PETSc for Partial Differential Equations: Numerical Solutions in C and Python by : Ed Bueler

Download or read book PETSc for Partial Differential Equations: Numerical Solutions in C and Python written by Ed Bueler and published by SIAM. This book was released on 2020-10-22 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.

Implementing Spectral Methods for Partial Differential Equations

Download Implementing Spectral Methods for Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9048122619
Total Pages : 397 pages
Book Rating : 4.0/5 (481 download)

DOWNLOAD NOW!


Book Synopsis Implementing Spectral Methods for Partial Differential Equations by : David A. Kopriva

Download or read book Implementing Spectral Methods for Partial Differential Equations written by David A. Kopriva and published by Springer Science & Business Media. This book was released on 2009-05-27 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898719356
Total Pages : 665 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Mark S. Gockenbach

Download or read book Partial Differential Equations written by Mark S. Gockenbach and published by SIAM. This book was released on 2010-12-02 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fresh, forward-looking undergraduate textbook that treats the finite element method and classical Fourier series method with equal emphasis.

Numerical Methods for Solving Time-dependent Problems for Partial Differential Equations

Download Numerical Methods for Solving Time-dependent Problems for Partial Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 126 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Solving Time-dependent Problems for Partial Differential Equations by : Heinz-Otto Kreiss

Download or read book Numerical Methods for Solving Time-dependent Problems for Partial Differential Equations written by Heinz-Otto Kreiss and published by . This book was released on 1978 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fourier Series and Numerical Methods for Partial Differential Equations

Download Fourier Series and Numerical Methods for Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470651377
Total Pages : 336 pages
Book Rating : 4.4/5 (76 download)

DOWNLOAD NOW!


Book Synopsis Fourier Series and Numerical Methods for Partial Differential Equations by : Richard Bernatz

Download or read book Fourier Series and Numerical Methods for Partial Differential Equations written by Richard Bernatz and published by John Wiley & Sons. This book was released on 2010-07-30 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.