Norms in Motivic Homotopy Theory

Download Norms in Motivic Homotopy Theory PDF Online Free

Author :
Publisher :
ISBN 13 : 9782856299395
Total Pages : pages
Book Rating : 4.2/5 (993 download)

DOWNLOAD NOW!


Book Synopsis Norms in Motivic Homotopy Theory by : Tom Bachmann

Download or read book Norms in Motivic Homotopy Theory written by Tom Bachmann and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects

Download Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030789772
Total Pages : 223 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects by : Frank Neumann

Download or read book Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects written by Frank Neumann and published by Springer Nature. This book was released on 2021-09-29 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on ‘Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects’ and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank’s contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.

Motivic Homotopy Theory

Download Motivic Homotopy Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540458972
Total Pages : 228 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Motivic Homotopy Theory by : Bjorn Ian Dundas

Download or read book Motivic Homotopy Theory written by Bjorn Ian Dundas and published by Springer Science & Business Media. This book was released on 2007-07-11 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.

Lecture Notes on Motivic Cohomology

Download Lecture Notes on Motivic Cohomology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821838471
Total Pages : 240 pages
Book Rating : 4.8/5 (384 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes on Motivic Cohomology by : Carlo Mazza

Download or read book Lecture Notes on Motivic Cohomology written by Carlo Mazza and published by American Mathematical Soc.. This book was released on 2006 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).

Algebraic Cobordism

Download Algebraic Cobordism PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540368248
Total Pages : 252 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Cobordism by : Marc Levine

Download or read book Algebraic Cobordism written by Marc Levine and published by Springer Science & Business Media. This book was released on 2007-02-23 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. The book also contains some examples of computations and applications.

Recent Progress in Homotopy Theory

Download Recent Progress in Homotopy Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821828010
Total Pages : 424 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Recent Progress in Homotopy Theory by : Donald M. Davis

Download or read book Recent Progress in Homotopy Theory written by Donald M. Davis and published by American Mathematical Soc.. This book was released on 2002 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings from the month-long program held at Johns Hopkins University (Baltimore, MD) on homotopy theory, sponsored by the Japan-U.S. Mathematics Institute (JAMI). The book begins with historical accounts on the work of Professors Peter Landweber and Stewart Priddy. Central among the other topics are the following: 1. classical and nonclassical theory of $H$-spaces, compact groups, and finite groups, 2. classical and chromatic homotopy theory andlocalization, 3. classical and topological Hochschild cohomology, 4. elliptic cohomology and its relation to Moonshine and topological modular forms, and 5. motivic cohomology and Chow rings. This volume surveys the current state of research in these areas and offers an overview of futuredirections.

Global Homotopy Theory

Download Global Homotopy Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110842581X
Total Pages : 847 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Global Homotopy Theory by : Stefan Schwede

Download or read book Global Homotopy Theory written by Stefan Schwede and published by Cambridge University Press. This book was released on 2018-09-06 with total page 847 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.

The Geometry of Iterated Loop Spaces

Download The Geometry of Iterated Loop Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540376038
Total Pages : 184 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Iterated Loop Spaces by : J.P. May

Download or read book The Geometry of Iterated Loop Spaces written by J.P. May and published by Springer. This book was released on 2006-11-15 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:

The $K$-book

Download The $K$-book PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821891324
Total Pages : 634 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis The $K$-book by : Charles A. Weibel

Download or read book The $K$-book written by Charles A. Weibel and published by American Mathematical Soc.. This book was released on 2013-06-13 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr

Triangulated Categories of Mixed Motives

Download Triangulated Categories of Mixed Motives PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303033242X
Total Pages : 442 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Triangulated Categories of Mixed Motives by : Denis-Charles Cisinski

Download or read book Triangulated Categories of Mixed Motives written by Denis-Charles Cisinski and published by Springer Nature. This book was released on 2019-11-09 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary aim of this monograph is to achieve part of Beilinson’s program on mixed motives using Voevodsky’s theories of A1-homotopy and motivic complexes. Historically, this book is the first to give a complete construction of a triangulated category of mixed motives with rational coefficients satisfying the full Grothendieck six functors formalism as well as fulfilling Beilinson’s program, in particular the interpretation of rational higher Chow groups as extension groups. Apart from Voevodsky’s entire work and Grothendieck’s SGA4, our main sources are Gabber’s work on étale cohomology and Ayoub’s solution to Voevodsky’s cross functors theory. We also thoroughly develop the theory of motivic complexes with integral coefficients over general bases, along the lines of Suslin and Voevodsky. Besides this achievement, this volume provides a complete toolkit for the study of systems of coefficients satisfying Grothendieck’ six functors formalism, including Grothendieck-Verdier duality. It gives a systematic account of cohomological descent theory with an emphasis on h-descent. It formalizes morphisms of coefficient systems with a view towards realization functors and comparison results. The latter allows to understand the polymorphic nature of rational mixed motives. They can be characterized by one of the following properties: existence of transfers, universality of rational algebraic K-theory, h-descent, étale descent, orientation theory. This monograph is a longstanding research work of the two authors. The first three parts are written in a self-contained manner and could be accessible to graduate students with a background in algebraic geometry and homotopy theory. It is designed to be a reference work and could also be useful outside motivic homotopy theory. The last part, containing the most innovative results, assumes some knowledge of motivic homotopy theory, although precise statements and references are given.

A Theory of Generalized Donaldson-Thomas Invariants

Download A Theory of Generalized Donaldson-Thomas Invariants PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821852795
Total Pages : 212 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Theory of Generalized Donaldson-Thomas Invariants by : Dominic D. Joyce

Download or read book A Theory of Generalized Donaldson-Thomas Invariants written by Dominic D. Joyce and published by American Mathematical Soc.. This book was released on 2011 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies generalized Donaldson-Thomas invariants $\bar{DT}{}^\alpha(\tau)$. They are rational numbers which `count' both $\tau$-stable and $\tau$-semistable coherent sheaves with Chern character $\alpha$ on $X$; strictly $\tau$-semistable sheaves must be counted with complicated rational weights. The $\bar{DT}{}^\alpha(\tau)$ are defined for all classes $\alpha$, and are equal to $DT^\alpha(\tau)$ when it is defined. They are unchanged under deformations of $X$, and transform by a wall-crossing formula under change of stability condition $\tau$. To prove all this, the authors study the local structure of the moduli stack $\mathfrak M$ of coherent sheaves on $X$. They show that an atlas for $\mathfrak M$ may be written locally as $\mathrm{Crit}(f)$ for $f:U\to{\mathbb C}$ holomorphic and $U$ smooth, and use this to deduce identities on the Behrend function $\nu_\mathfrak M$. They compute the invariants $\bar{DT}{}^\alpha(\tau)$ in examples, and make a conjecture about their integrality properties. They also extend the theory to abelian categories $\mathrm{mod}$-$\mathbb{C}Q\backslash I$ of representations of a quiver $Q$ with relations $I$ coming from a superpotential $W$ on $Q$.

Field Arithmetic

Download Field Arithmetic PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540228110
Total Pages : 812 pages
Book Rating : 4.2/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Field Arithmetic by : Michael D. Fried

Download or read book Field Arithmetic written by Michael D. Fried and published by Springer Science & Business Media. This book was released on 2005 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?

Handbook of K-Theory

Download Handbook of K-Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 354023019X
Total Pages : 1148 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Handbook of K-Theory by : Eric Friedlander

Download or read book Handbook of K-Theory written by Eric Friedlander and published by Springer Science & Business Media. This book was released on 2005-07-18 with total page 1148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.

Algebra, Arithmetic, and Geometry

Download Algebra, Arithmetic, and Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817647473
Total Pages : 700 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Algebra, Arithmetic, and Geometry by : Yuri Tschinkel

Download or read book Algebra, Arithmetic, and Geometry written by Yuri Tschinkel and published by Springer Science & Business Media. This book was released on 2010-04-11 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.

Cycles, Transfers, and Motivic Homology Theories. (AM-143)

Download Cycles, Transfers, and Motivic Homology Theories. (AM-143) PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691048150
Total Pages : 262 pages
Book Rating : 4.6/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Cycles, Transfers, and Motivic Homology Theories. (AM-143) by : Vladimir Voevodsky

Download or read book Cycles, Transfers, and Motivic Homology Theories. (AM-143) written by Vladimir Voevodsky and published by Princeton University Press. This book was released on 2000 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The original goal that ultimately led to this volume was the construction of "motivic cohomology theory," whose existence was conjectured by A. Beilinson and S. Lichtenbaum. This is achieved in the book's fourth paper, using results of the other papers whose additional role is to contribute to our understanding of various properties of algebraic cycles. The material presented provides the foundations for the recent proof of the celebrated "Milnor Conjecture" by Vladimir Voevodsky. The theory of sheaves of relative cycles is developed in the first paper of this volume. The theory of presheaves with transfers and more specifically homotopy invariant presheaves with transfers is the main theme of the second paper. The Friedlander-Lawson moving lemma for families of algebraic cycles appears in the third paper in which a bivariant theory called bivariant cycle cohomology is constructed. The fifth and last paper in the volume gives a proof of the fact that bivariant cycle cohomology groups are canonically isomorphic (in appropriate cases) to Bloch's higher Chow groups, thereby providing a link between the authors' theory and Bloch's original approach to motivic (co-)homology.

A1-Algebraic Topology over a Field

Download A1-Algebraic Topology over a Field PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642295142
Total Pages : 267 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis A1-Algebraic Topology over a Field by : Fabien Morel

Download or read book A1-Algebraic Topology over a Field written by Fabien Morel and published by Springer. This book was released on 2012-07-13 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text deals with A1-homotopy theory over a base field, i.e., with the natural homotopy theory associated to the category of smooth varieties over a field in which the affine line is imposed to be contractible. It is a natural sequel to the foundational paper on A1-homotopy theory written together with V. Voevodsky. Inspired by classical results in algebraic topology, we present new techniques, new results and applications related to the properties and computations of A1-homotopy sheaves, A1-homology sheaves, and sheaves with generalized transfers, as well as to algebraic vector bundles over affine smooth varieties.

The Abel Prize 2013-2017

Download The Abel Prize 2013-2017 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319990284
Total Pages : 762 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis The Abel Prize 2013-2017 by : Helge Holden

Download or read book The Abel Prize 2013-2017 written by Helge Holden and published by Springer. This book was released on 2019-02-23 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the winners of the Abel Prize in mathematics for the period 2013–17: Pierre Deligne (2013); Yakov G. Sinai (2014); John Nash Jr. and Louis Nirenberg (2015); Sir Andrew Wiles (2016); and Yves Meyer (2017). The profiles feature autobiographical information as well as a scholarly description of each mathematician’s work. In addition, each profile contains a Curriculum Vitae, a complete bibliography, and the full citation from the prize committee. The book also includes photos for the period 2003–2017 showing many of the additional activities connected with the Abel Prize. As an added feature, video interviews with the Laureates as well as videos from the prize ceremony are provided at an accompanying website (http://extras.springer.com/). This book follows on The Abel Prize: 2003-2007. The First Five Years (Springer, 2010) and The Abel Prize 2008-2012 (Springer 2014), which profile the work of the previous Abel Prize winners.