Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Neuronal Network Analysis
Download Neuronal Network Analysis full books in PDF, epub, and Kindle. Read online Neuronal Network Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Neural Network Analysis, Architectures and Applications by : A Browne
Download or read book Neural Network Analysis, Architectures and Applications written by A Browne and published by CRC Press. This book was released on 1997-01-01 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Network Analysis, Architectures and Applications discusses the main areas of neural networks, with each authoritative chapter covering the latest information from different perspectives. Divided into three parts, the book first lays the groundwork for understanding and simplifying networks. It then describes novel architectures and algorithms, including pulse-stream techniques, cellular neural networks, and multiversion neural computing. The book concludes by examining various neural network applications, such as neuron-fuzzy control systems and image compression. This final part of the book also provides a case study involving oil spill detection. This book is invaluable for students and practitioners who have a basic understanding of neural computing yet want to broaden and deepen their knowledge of the field.
Book Synopsis Fundamentals of Brain Network Analysis by : Alex Fornito
Download or read book Fundamentals of Brain Network Analysis written by Alex Fornito and published by Academic Press. This book was released on 2016-03-04 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization. - Winner of the 2017 PROSE Award in Biomedicine & Neuroscience and the 2017 British Medical Association (BMA) Award in Neurology - Extensively illustrated throughout by graphical representations of key mathematical concepts and their practical applications to analyses of nervous systems - Comprehensively covers graph theoretical analyses of structural and functional brain networks, from microscopic to macroscopic scales, using examples based on a wide variety of experimental methods in neuroscience - Designed to inform and empower scientists at all levels of experience, and from any specialist background, wanting to use modern methods of network science to understand the organization of the brain
Book Synopsis Mathematical Methods for Neural Network Analysis and Design by : Richard M. Golden
Download or read book Mathematical Methods for Neural Network Analysis and Design written by Richard M. Golden and published by MIT Press. This book was released on 1996 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: For convenience, many of the proofs of the key theorems have been rewritten so that the entire book uses a relatively uniform notion.
Book Synopsis Sensitivity Analysis for Neural Networks by : Daniel S. Yeung
Download or read book Sensitivity Analysis for Neural Networks written by Daniel S. Yeung and published by Springer Science & Business Media. This book was released on 2009-11-09 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters. This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks.
Download or read book Neural Networks written by Herve Abdi and published by SAGE. This book was released on 1999 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Neural Networks have influenced many areas of research but have only just started to be utilized in social science research. Neural Networks provides the first accessible introduction to this analysis as a powerful method for social scientists. It provides numerous studies and examples that illustrate the advantages of neural network analysis over other quantitative and modeling methods in wide spread use among social scientists. The author presents the methods in an accessible style for the reader who does not have a background in computer science. Features include an introduction to the vocabulary and framework of neural networks, a concise history of neural network methods, a substantial review of the literature, detailed neural network applications in the social sciences, coverage of the most common alternative neural network models, methodological considerations in applying neural networks, examples using the two leading software packages for neural network analysis, and numerous illustrations and diagrams."--Pub. desc.
Book Synopsis Networks of the Brain by : Olaf Sporns
Download or read book Networks of the Brain written by Olaf Sporns and published by MIT Press. This book was released on 2016-02-12 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrative overview of network approaches to neuroscience explores the origins of brain complexity and the link between brain structure and function. Over the last decade, the study of complex networks has expanded across diverse scientific fields. Increasingly, science is concerned with the structure, behavior, and evolution of complex systems ranging from cells to ecosystems. In Networks of the Brain, Olaf Sporns describes how the integrative nature of brain function can be illuminated from a complex network perspective. Highlighting the many emerging points of contact between neuroscience and network science, the book serves to introduce network theory to neuroscientists and neuroscience to those working on theoretical network models. Sporns emphasizes how networks connect levels of organization in the brain and how they link structure to function, offering an informal and nonmathematical treatment of the subject. Networks of the Brain provides a synthesis of the sciences of complex networks and the brain that will be an essential foundation for future research.
Book Synopsis Convergence Analysis of Recurrent Neural Networks by : Zhang Yi
Download or read book Convergence Analysis of Recurrent Neural Networks written by Zhang Yi and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the outstanding and pioneering research work of Hopfield on recurrent neural networks (RNNs) in the early 80s of the last century, neural networks have rekindled strong interests in scientists and researchers. Recent years have recorded a remarkable advance in research and development work on RNNs, both in theoretical research as weIl as actual applications. The field of RNNs is now transforming into a complete and independent subject. From theory to application, from software to hardware, new and exciting results are emerging day after day, reflecting the keen interest RNNs have instilled in everyone, from researchers to practitioners. RNNs contain feedback connections among the neurons, a phenomenon which has led rather naturally to RNNs being regarded as dynamical systems. RNNs can be described by continuous time differential systems, discrete time systems, or functional differential systems, and more generally, in terms of non linear systems. Thus, RNNs have to their disposal, a huge set of mathematical tools relating to dynamical system theory which has tumed out to be very useful in enabling a rigorous analysis of RNNs.
Book Synopsis Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics by : Carl Faingold
Download or read book Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics written by Carl Faingold and published by Academic Press. This book was released on 2013-12-26 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, edited by two leaders in the field, offers a current and complete review of what we know about neural networks. How the brain accomplishes many of its more complex tasks can only be understood via study of neuronal network control and network interactions. Large networks can undergo major functional changes, resulting in substantially different brain function and affecting everything from learning to the potential for epilepsy. With chapters authored by experts in each topic, this book advances the understanding of: - How the brain carries out important tasks via networks - How these networks interact in normal brain function - Major mechanisms that control network function - The interaction of the normal networks to produce more complex behaviors - How brain disorders can result from abnormal interactions - How therapy of disorders can be advanced through this network approach This book will benefit neuroscience researchers and graduate students with an interest in networks, as well as clinicians in neuroscience, pharmacology, and psychiatry dealing with neurobiological disorders. - Utilizes perspectives and tools from various neuroscience subdisciplines (cellular, systems, physiologic), making the volume broadly relevant - Chapters explore normal network function and control mechanisms, with an eye to improving therapies for brain disorders - Reflects predominant disciplinary shift from an anatomical to a functional perspective of the brain - Edited work with chapters authored by leaders in the field around the globe – the broadest, most expert coverage available
Book Synopsis Neuronal Dynamics by : Wulfram Gerstner
Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Download or read book Neural Networks written by Berndt Müller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brief overview of the neural structure of the brain and the history of neural-network modeling introduces to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers subjects like statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - The final part discusses nine programs with practical demonstrations of neural-network models. The software and source code in C are on a 3 1/2" MS-DOS diskette can be run with Microsoft, Borland, Turbo-C, or compatible compilers.
Author :Frank C. Hoppensteadt Publisher :Springer Science & Business Media ISBN 13 :1461218284 Total Pages :404 pages Book Rating :4.4/5 (612 download)
Book Synopsis Weakly Connected Neural Networks by : Frank C. Hoppensteadt
Download or read book Weakly Connected Neural Networks written by Frank C. Hoppensteadt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Devoted to local and global analysis of weakly connected systems with applications to neurosciences, this book uses bifurcation theory and canonical models as the major tools of analysis. It presents a systematic and well motivated development of both weakly connected system theory and mathematical neuroscience, addressing bifurcations in neuron and brain dynamics, synaptic organisations of the brain, and the nature of neural codes. The authors present classical results together with the most recent developments in the field, making this a useful reference for researchers and graduate students in various branches of mathematical neuroscience.
Book Synopsis Neural Networks: Computational Models and Applications by : Huajin Tang
Download or read book Neural Networks: Computational Models and Applications written by Huajin Tang and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.
Book Synopsis Artificial Neuronal Networks by : Sovan Lek
Download or read book Artificial Neuronal Networks written by Sovan Lek and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, an easily understandable account of modelling methods with artificial neuronal networks for practical applications in ecology and evolution is provided. Special features include examples of applications using both supervised and unsupervised training, comparative analysis of artificial neural networks and conventional statistical methods, and proposals to deal with poor datasets. Extensive references and a large range of topics make this book a useful guide for ecologists, evolutionary ecologists and population geneticists.
Author :Management Association, Information Resources Publisher :IGI Global ISBN 13 :1668424096 Total Pages :1575 pages Book Rating :4.6/5 (684 download)
Book Synopsis Research Anthology on Artificial Neural Network Applications by : Management Association, Information Resources
Download or read book Research Anthology on Artificial Neural Network Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-07-16 with total page 1575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Book Synopsis Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) by : Cheng Few Lee
Download or read book Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
Book Synopsis Fundamentals of Neural Network Modeling by : Randolph W. Parks
Download or read book Fundamentals of Neural Network Modeling written by Randolph W. Parks and published by MIT Press. This book was released on 1998 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble
Book Synopsis Artificial Neural Networks in Biological and Environmental Analysis by : Grady Hanrahan
Download or read book Artificial Neural Networks in Biological and Environmental Analysis written by Grady Hanrahan and published by CRC Press. This book was released on 2011-01-18 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originating from models of biological neural systems, artificial neural networks (ANN) are the cornerstones of artificial intelligence research. Catalyzed by the upsurge in computational power and availability, and made widely accessible with the co-evolution of software, algorithms, and methodologies, artificial neural networks have had a profound