Neural Networks in Optimization

Download Neural Networks in Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475731671
Total Pages : 369 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks in Optimization by : Xiang-Sun Zhang

Download or read book Neural Networks in Optimization written by Xiang-Sun Zhang and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: People are facing more and more NP-complete or NP-hard problems of a combinatorial nature and of a continuous nature in economic, military and management practice. There are two ways in which one can enhance the efficiency of searching for the solutions of these problems. The first is to improve the speed and memory capacity of hardware. We all have witnessed the computer industry's amazing achievements with hardware and software developments over the last twenty years. On one hand many computers, bought only a few years ago, are being sent to elementary schools for children to learn the ABC's of computing. On the other hand, with economic, scientific and military developments, it seems that the increase of intricacy and the size of newly arising problems have no end. We all realize then that the second way, to design good algorithms, will definitely compensate for the hardware limitations in the case of complicated problems. It is the collective and parallel computation property of artificial neural net works that has activated the enthusiasm of researchers in the field of computer science and applied mathematics. It is hard to say that artificial neural networks are solvers of the above-mentioned dilemma, but at least they throw some new light on the difficulties we face. We not only anticipate that there will be neural computers with intelligence but we also believe that the research results of artificial neural networks might lead to new algorithms on von Neumann's computers.

Neural Networks for Optimization and Signal Processing

Download Neural Networks for Optimization and Signal Processing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 :
Total Pages : 578 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks for Optimization and Signal Processing by : Andrzej Cichocki

Download or read book Neural Networks for Optimization and Signal Processing written by Andrzej Cichocki and published by John Wiley & Sons. This book was released on 1993-06-07 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: A topical introduction on the ability of artificial neural networks to not only solve on-line a wide range of optimization problems but also to create new techniques and architectures. Provides in-depth coverage of mathematical modeling along with illustrative computer simulation results.

Network Models and Optimization

Download Network Models and Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1848001819
Total Pages : 692 pages
Book Rating : 4.8/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Network Models and Optimization by : Mitsuo Gen

Download or read book Network Models and Optimization written by Mitsuo Gen and published by Springer Science & Business Media. This book was released on 2008-07-10 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: Network models are critical tools in business, management, science and industry. “Network Models and Optimization” presents an insightful, comprehensive, and up-to-date treatment of multiple objective genetic algorithms to network optimization problems in many disciplines, such as engineering, computer science, operations research, transportation, telecommunication, and manufacturing. The book extensively covers algorithms and applications, including shortest path problems, minimum cost flow problems, maximum flow problems, minimum spanning tree problems, traveling salesman and postman problems, location-allocation problems, project scheduling problems, multistage-based scheduling problems, logistics network problems, communication network problem, and network models in assembly line balancing problems, and airline fleet assignment problems. The book can be used both as a student textbook and as a professional reference for practitioners who use network optimization methods to model and solve problems.

Evolutionary Algorithms and Neural Networks

Download Evolutionary Algorithms and Neural Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319930257
Total Pages : 164 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Algorithms and Neural Networks by : Seyedali Mirjalili

Download or read book Evolutionary Algorithms and Neural Networks written by Seyedali Mirjalili and published by Springer. This book was released on 2018-06-26 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.

Fundamentals of Artificial Neural Networks

Download Fundamentals of Artificial Neural Networks PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262082396
Total Pages : 546 pages
Book Rating : 4.0/5 (823 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Artificial Neural Networks by : Mohamad H. Hassoun

Download or read book Fundamentals of Artificial Neural Networks written by Mohamad H. Hassoun and published by MIT Press. This book was released on 1995 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic account of artificial neural network paradigms that identifies fundamental concepts and major methodologies. Important results are integrated into the text in order to explain a wide range of existing empirical observations and commonly used heuristics.

Integration of Swarm Intelligence and Artificial Neural Network

Download Integration of Swarm Intelligence and Artificial Neural Network PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814280143
Total Pages : 352 pages
Book Rating : 4.8/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Integration of Swarm Intelligence and Artificial Neural Network by : Satchidananda Dehuri

Download or read book Integration of Swarm Intelligence and Artificial Neural Network written by Satchidananda Dehuri and published by World Scientific. This book was released on 2011 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a new forum for the dissemination of knowledge in both theoretical and applied research on swarm intelligence (SI) and artificial neural network (ANN). It accelerates interaction between the two bodies of knowledge and fosters a unified development in the next generation of computational model for machine learning. To the best of our knowledge, the integration of SI and ANN is the first attempt to integrate various aspects of both the independent research area into a single volume.

Optimization for Machine Learning

Download Optimization for Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 026201646X
Total Pages : 509 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Optimization for Machine Learning by : Suvrit Sra

Download or read book Optimization for Machine Learning written by Suvrit Sra and published by MIT Press. This book was released on 2012 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Download Deep Learning Techniques and Optimization Strategies in Big Data Analytics PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1799811948
Total Pages : 355 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Techniques and Optimization Strategies in Big Data Analytics by : Thomas, J. Joshua

Download or read book Deep Learning Techniques and Optimization Strategies in Big Data Analytics written by Thomas, J. Joshua and published by IGI Global. This book was released on 2019-11-29 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.

Bio-Inspired Systems: Computational and Ambient Intelligence

Download Bio-Inspired Systems: Computational and Ambient Intelligence PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642024785
Total Pages : 1403 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Bio-Inspired Systems: Computational and Ambient Intelligence by : Joan Cabestany

Download or read book Bio-Inspired Systems: Computational and Ambient Intelligence written by Joan Cabestany and published by Springer. This book was released on 2009-06-05 with total page 1403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the set of final accepted papers for the tenth edition of the IWANN conference “International Work-Conference on Artificial neural Networks” held in Salamanca (Spain) during June 10–12, 2009. IWANN is a biennial conference focusing on the foundations, theory, models and applications of systems inspired by nature (mainly, neural networks, evolutionary and soft-computing systems). Since the first edition in Granada (LNCS 540, 1991), the conference has evolved and matured. The list of topics in the successive Call for - pers has also evolved, resulting in the following list for the present edition: 1. Mathematical and theoretical methods in computational intelligence. C- plex and social systems. Evolutionary and genetic algorithms. Fuzzy logic. Mathematics for neural networks. RBF structures. Self-organizing networks and methods. Support vector machines. 2. Neurocomputational formulations. Single-neuron modelling. Perceptual m- elling. System-level neural modelling. Spiking neurons. Models of biological learning. 3. Learning and adaptation. Adaptive systems. Imitation learning. Reconfig- able systems. Supervised, non-supervised, reinforcement and statistical al- rithms. 4. Emulation of cognitive functions. Decision making. Multi-agent systems. S- sor mesh. Natural language. Pattern recognition. Perceptual and motor functions (visual, auditory, tactile, virtual reality, etc.). Robotics. Planning motor control. 5. Bio-inspired systems and neuro-engineering. Embedded intelligent systems. Evolvable computing. Evolving hardware. Microelectronics for neural, fuzzy and bio-inspired systems. Neural prostheses. Retinomorphic systems. Bra- computer interfaces (BCI). Nanosystems. Nanocognitive systems.

Arithmetic Complexity of Computations

Download Arithmetic Complexity of Computations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611970364
Total Pages : 96 pages
Book Rating : 4.9/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Arithmetic Complexity of Computations by : Shmuel Winograd

Download or read book Arithmetic Complexity of Computations written by Shmuel Winograd and published by SIAM. This book was released on 1980-01-01 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on finding the minimum number of arithmetic operations needed to perform the computation and on finding a better algorithm when improvement is possible. The author concentrates on that class of problems concerned with computing a system of bilinear forms. Results that lead to applications in the area of signal processing are emphasized, since (1) even a modest reduction in the execution time of signal processing problems could have practical significance; (2) results in this area are relatively new and are scattered in journal articles; and (3) this emphasis indicates the flavor of complexity of computation.

Numerical Optimization

Download Numerical Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387400656
Total Pages : 686 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Numerical Optimization by : Jorge Nocedal

Download or read book Numerical Optimization written by Jorge Nocedal and published by Springer Science & Business Media. This book was released on 2006-12-11 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

Optimization for Machine Learning

Download Optimization for Machine Learning PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 412 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Optimization for Machine Learning by : Jason Brownlee

Download or read book Optimization for Machine Learning written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2021-09-22 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization happens everywhere. Machine learning is one example of such and gradient descent is probably the most famous algorithm for performing optimization. Optimization means to find the best value of some function or model. That can be the maximum or the minimum according to some metric. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will learn how to find the optimum point to numerical functions confidently using modern optimization algorithms.

Automated Machine Learning

Download Automated Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030053180
Total Pages : 223 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Automated Machine Learning by : Frank Hutter

Download or read book Automated Machine Learning written by Frank Hutter and published by Springer. This book was released on 2019-05-17 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

Intelligent Optimisation Techniques

Download Intelligent Optimisation Techniques PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447107217
Total Pages : 308 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Optimisation Techniques by : Duc Pham

Download or read book Intelligent Optimisation Techniques written by Duc Pham and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work gives a concise introduction to four important optimization techniques, presenting a range of applications drawn from electrical, manufacturing, mechanical, and systems engineering-such as the design of microstrip antennas, digital FIR filters, and fuzzy logic controllers. The book also contains the C programs used to implement the main techniques for those wishing to experiment with them.

From Natural to Artificial Neural Computation

Download From Natural to Artificial Neural Computation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540594970
Total Pages : 1182 pages
Book Rating : 4.5/5 (949 download)

DOWNLOAD NOW!


Book Synopsis From Natural to Artificial Neural Computation by : Jose Mira

Download or read book From Natural to Artificial Neural Computation written by Jose Mira and published by Springer Science & Business Media. This book was released on 1995-05-24 with total page 1182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of the International Workshop on Artificial Neural Networks, IWANN '95, held in Torremolinos near Malaga, Spain in June 1995. The book contains 143 revised papers selected from a wealth of submissions and five invited contributions; it covers all current aspects of neural computation and presents the state of the art of ANN research and applications. The papers are organized in sections on neuroscience, computational models of neurons and neural nets, organization principles, learning, cognitive science and AI, neurosimulators, implementation, neural networks for perception, and neural networks for communication and control.

Fundamentals of Deep Learning

Download Fundamentals of Deep Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491925566
Total Pages : 272 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Deep Learning by : Nikhil Buduma

Download or read book Fundamentals of Deep Learning written by Nikhil Buduma and published by "O'Reilly Media, Inc.". This book was released on 2017-05-25 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning

Advances in Neural Networks – ISNN 2020

Download Advances in Neural Networks – ISNN 2020 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030642216
Total Pages : 284 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Advances in Neural Networks – ISNN 2020 by : Min Han

Download or read book Advances in Neural Networks – ISNN 2020 written by Min Han and published by Springer Nature. This book was released on 2020-11-28 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume LNCS 12557 constitutes the refereed proceedings of the 17th International Symposium on Neural Networks, ISNN 2020, held in Cairo, Egypt, in December 2020. The 24 papers presented in the two volumes were carefully reviewed and selected from 39 submissions. The papers were organized in topical sections named: optimization algorithms; neurodynamics, complex systems, and chaos; supervised/unsupervised/reinforcement learning/deep learning; models, methods and algorithms; and signal, image and video processing.