Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Modelling Of Nonlinear Dynamic Systems Using Neural Networks For Application In Intelligent Control
Download Modelling Of Nonlinear Dynamic Systems Using Neural Networks For Application In Intelligent Control full books in PDF, epub, and Kindle. Read online Modelling Of Nonlinear Dynamic Systems Using Neural Networks For Application In Intelligent Control ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton
Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Book Synopsis Neural Systems for Control by : Omid Omidvar
Download or read book Neural Systems for Control written by Omid Omidvar and published by Elsevier. This book was released on 1997-02-24 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis
Book Synopsis Intelligent Control Systems Using Computational Intelligence Techniques by : A.E. Ruano
Download or read book Intelligent Control Systems Using Computational Intelligence Techniques written by A.E. Ruano and published by IET. This book was released on 2005-07-18 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Control techniques are becoming important tools in both academia and industry. Methodologies developed in the field of soft-computing, such as neural networks, fuzzy systems and evolutionary computation, can lead to accommodation of more complex processes, improved performance and considerable time savings and cost reductions. Intelligent Control Systems using Computational Intellingence Techniques details the application of these tools to the field of control systems. Each chapter gives and overview of current approaches in the topic covered, with a set of the most important references in the field, and then details the author's approach, examining both the theory and practical applications.
Book Synopsis Modelling, Simulation and Control of Non-linear Dynamical Systems by : Patricia Melin
Download or read book Modelling, Simulation and Control of Non-linear Dynamical Systems written by Patricia Melin and published by CRC Press. This book was released on 2001-10-25 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: These authors use soft computing techniques and fractal theory in this new approach to mathematical modeling, simulation and control of complexion-linear dynamical systems. First, a new fuzzy-fractal approach to automated mathematical modeling of non-linear dynamical systems is presented. It is illustrated with examples on the PROLOG programming la
Book Synopsis Neural Network Control of Nonlinear Discrete-Time Systems by : Jagannathan Sarangapani
Download or read book Neural Network Control of Nonlinear Discrete-Time Systems written by Jagannathan Sarangapani and published by CRC Press. This book was released on 2018-10-03 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems. Borrowing from Biology Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts. Progressive Development After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware. Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.
Book Synopsis Modelling, Simulation and Control of Non-linear Dynamical Systems by : Patricia Melin
Download or read book Modelling, Simulation and Control of Non-linear Dynamical Systems written by Patricia Melin and published by CRC Press. This book was released on 2001-10-25 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: These authors use soft computing techniques and fractal theory in this new approach to mathematical modeling, simulation and control of complexion-linear dynamical systems. First, a new fuzzy-fractal approach to automated mathematical modeling of non-linear dynamical systems is presented. It is illustrated with examples on the PROLOG programming la
Book Synopsis Modelling and Control of Dynamic Systems Using Gaussian Process Models by : Juš Kocijan
Download or read book Modelling and Control of Dynamic Systems Using Gaussian Process Models written by Juš Kocijan and published by Springer. This book was released on 2015-11-21 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.
Book Synopsis Intelligent Observer and Control Design for Nonlinear Systems by : Dierk Schröder
Download or read book Intelligent Observer and Control Design for Nonlinear Systems written by Dierk Schröder and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This application-oriented monograph focuses on a novel and complex type of control systems. Written on an engineering level, including fundamentals, advanced methods and applications, the book applies techniques originating from new methods such as artificial intelligence, fuzzy logic, neural networks etc.
Book Synopsis Applications of Neural Adaptive Control Technology by : Jens Kalkkuhl
Download or read book Applications of Neural Adaptive Control Technology written by Jens Kalkkuhl and published by World Scientific. This book was released on 1997 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the results of the second workshop on Neural Adaptive Control Technology, NACT II, held on September 9-10, 1996, in Berlin. The workshop was organised in connection with a three-year European-Union-funded Basic Research Project in the ESPRIT framework, called NACT, a collaboration between Daimler-Benz (Germany) and the University of Glasgow (Scotland).The NACT project, which began on 1 April 1994, is a study of the fundamental properties of neural-network-based adaptive control systems. Where possible, links with traditional adaptive control systems are exploited. A major aim is to develop a systematic engineering procedure for designing neural controllers for nonlinear dynamic systems. The techniques developed are being evaluated on concrete industrial problems from within the Daimler-Benz group of companies.The aim of the workshop was to bring together selected invited specialists in the fields of adaptive control, nonlinear systems and neural networks. The first workshop (NACT I) took place in Glasgow in May 1995 and was mainly devoted to theoretical issues of neural adaptive control. Besides monitoring further development of theory, the NACT II workshop was focused on industrial applications and software tools. This context dictated the focus of the book and guided the editors in the choice of the papers and their subsequent reshaping into substantive book chapters. Thus, with the project having progressed into its applications stage, emphasis is put on the transfer of theory of neural adaptive engineering into industrial practice. The contributors are therefore both renowned academics and practitioners from major industrial users of neurocontrol.
Book Synopsis Methods and Applications of Intelligent Control by : S.G. Tzafestas
Download or read book Methods and Applications of Intelligent Control written by S.G. Tzafestas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with Intelligent Control methods and applications. The field of intelligent control has been expanded very much during the recent years and a solid body of theoretical and practical results are now available. These results have been obtained through the synergetic fusion of concepts and techniques from a variety of fields such as automatic control, systems science, computer science, neurophysiology and operational research. Intelligent control systems have to perform anthropomorphic tasks fully autonomously or interactively with the human under known or unknown and uncertain environmental conditions. Therefore the basic components of any intelligent control system include cognition, perception, learning, sensing, planning, numeric and symbolic processing, fault detection/repair, reaction, and control action. These components must be linked in a systematic, synergetic and efficient way. Predecessors of intelligent control are adaptive control, self-organizing control, and learning control which are well documented in the literature. Typical application examples of intelligent controls are intelligent robotic systems, intelligent manufacturing systems, intelligent medical systems, and intelligent space teleoperators. Intelligent controllers must employ both quantitative and qualitative information and must be able to cope with severe temporal and spatial variations, in addition to the fundamental task of achieving the desired transient and steady-state performance. Of course the level of intelligence required in each particular application is a matter of discussion between the designers and users. The current literature on intelligent control is increasing, but the information is still available in a sparse and disorganized way.
Book Synopsis Neural Network Systems Techniques and Applications by :
Download or read book Neural Network Systems Techniques and Applications written by and published by Academic Press. This book was released on 1998-02-09 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book emphasizes neural network structures for achieving practical and effective systems, and provides many examples. Practitioners, researchers, and students in industrial, manufacturing, electrical, mechanical,and production engineering will find this volume a unique and comprehensive reference source for diverse application methodologies. Control and Dynamic Systems covers the important topics of highly effective Orthogonal Activation Function Based Neural Network System Architecture, multi-layer recurrent neural networks for synthesizing and implementing real-time linear control,adaptive control of unknown nonlinear dynamical systems, Optimal Tracking Neural Controller techniques, a consideration of unified approximation theory and applications, techniques for the determination of multi-variable nonlinear model structures for dynamic systems with a detailed treatment of relevant system model input determination, High Order Neural Networks and Recurrent High Order Neural Networks, High Order Moment Neural Array Systems, Online Learning Neural Network controllers, and Radial Bias Function techniques. Coverage includes: - Orthogonal Activation Function Based Neural Network System Architecture (OAFNN) - Multilayer recurrent neural networks for synthesizing and implementing real-time linear control - Adaptive control of unknown nonlinear dynamical systems - Optimal Tracking Neural Controller techniques - Consideration of unified approximation theory and applications - Techniques for determining multivariable nonlinear model structures for dynamic systems, with a detailed treatment of relevant system model input determination
Book Synopsis Advances in Computational Intelligence by : Ildar Batyrshin
Download or read book Advances in Computational Intelligence written by Ildar Batyrshin and published by Springer. This book was released on 2013-03-21 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNAI 7629 and LNAI 7630 constitutes the refereed proceedings of the 11th Mexican International Conference on Artificial Intelligence, MICAI 2012, held in San Luis Potosí, Mexico, in October/November 2012. The 80 revised papers presented were carefully reviewed and selected from 224 submissions. The second volume includes 40 papers focusing on soft computing. The papers are organized in the following topical sections: natural language processing; evolutionary and nature-inspired metaheuristic algorithms; neural networks and hybrid intelligent systems; fuzzy systems and probabilistic models in decision making.
Book Synopsis Soft Computing and Intelligent Systems by : Madan M. Gupta
Download or read book Soft Computing and Intelligent Systems written by Madan M. Gupta and published by Elsevier. This book was released on 1999-10-28 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of soft computing is emerging from the cutting edge research over the last ten years devoted to fuzzy engineering and genetic algorithms. The subject is being called soft computing and computational intelligence. With acceptance of the research fundamentals in these important areas, the field is expanding into direct applications through engineering and systems science.This book cover the fundamentals of this emerging filed, as well as direct applications and case studies. There is a need for practicing engineers, computer scientists, and system scientists to directly apply "fuzzy" engineering into a wide array of devices and systems.
Book Synopsis Recent Advances in Artificial Neural Networks by : L. C. Jain
Download or read book Recent Advances in Artificial Neural Networks written by L. C. Jain and published by CRC Press. This book was released on 2018-05-04 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks represent a new generation of information processing paradigms designed to mimic-in a very limited sense-the human brain. They can learn, recall, and generalize from training data, and with their potential applications limited only by the imaginations of scientists and engineers, they are commanding tremendous popularity and research interest. Over the last four decades, researchers have reported a number of neural network paradigms, however, the newest of these have not appeared in book form-until now. Recent Advances in Artificial Neural Networks collects the latest neural network paradigms and reports on their promising new applications. World-renowned experts discuss the use of neural networks in pattern recognition, color induction, classification, cluster detection, and more. Application engineers, scientists, and research students from all disciplines with an interest in considering neural networks for solving real-world problems will find this collection useful.
Book Synopsis Intelligent Adaptive Control by : Lakhmi C. Jain
Download or read book Intelligent Adaptive Control written by Lakhmi C. Jain and published by CRC Press. This book was released on 1998-12-29 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes important techniques, developments, and applications of computational intelligence in system control. Chapters present: an introduction to the fundamentals of neural networks, fuzzy logic, and evolutionary computing a rigorous treatment of intelligent control industrial applications of intelligent control and soft computing, including transportation, petroleum, motor drive, industrial automation, and fish processing other knowledge-based techniques, including vehicle driving aid and air traffic management Intelligent Adaptive Control provides a state-of-the-art treatment of practical applications of computational intelligence in system control. The book cohesively covers introductory and advanced theory, design, implementation, and industrial use - serving as a singular resource for the theory and application of intelligent control, particularly employing fuzzy logic, neural networks, and evolutionary computing.
Book Synopsis Intelligent Control of Robotic Systems by : D. Katic
Download or read book Intelligent Control of Robotic Systems written by D. Katic and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: As robotic systems make their way into standard practice, they have opened the door to a wide spectrum of complex applications. Such applications usually demand that the robots be highly intelligent. Future robots are likely to have greater sensory capabilities, more intelligence, higher levels of manual dexter ity, and adequate mobility, compared to humans. In order to ensure high-quality control and performance in robotics, new intelligent control techniques must be developed, which are capable of coping with task complexity, multi-objective decision making, large volumes of perception data and substantial amounts of heuristic information. Hence, the pursuit of intelligent autonomous robotic systems has been a topic of much fascinating research in recent years. On the other hand, as emerging technologies, Soft Computing paradigms consisting of complementary elements of Fuzzy Logic, Neural Computing and Evolutionary Computation are viewed as the most promising methods towards intelligent robotic systems. Due to their strong learning and cognitive ability and good tolerance of uncertainty and imprecision, Soft Computing techniques have found wide application in the area of intelligent control of robotic systems.
Book Synopsis Adaptive Approximation Based Control by : Jay A. Farrell
Download or read book Adaptive Approximation Based Control written by Jay A. Farrell and published by John Wiley & Sons. This book was released on 2006-04-14 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: A highly accessible and unified approach to the design and analysis of intelligent control systems Adaptive Approximation Based Control is a tool every control designer should have in his or her control toolbox. Mixing approximation theory, parameter estimation, and feedback control, this book presents a unified approach designed to enable readers to apply adaptive approximation based control to existing systems, and, more importantly, to gain enough intuition and understanding to manipulate and combine it with other control tools for applications that have not been encountered before. The authors provide readers with a thought-provoking framework for rigorously considering such questions as: * What properties should the function approximator have? * Are certain families of approximators superior to others? * Can the stability and the convergence of the approximator parameters be guaranteed? * Can control systems be designed to be robust in the face of noise, disturbances, and unmodeled effects? * Can this approach handle significant changes in the dynamics due to such disruptions as system failure? * What types of nonlinear dynamic systems are amenable to this approach? * What are the limitations of adaptive approximation based control? Combining theoretical formulation and design techniques with extensive use of simulation examples, this book is a stimulating text for researchers and graduate students and a valuable resource for practicing engineers.