Modeling of Solid Particle Transport in Fractures and Its Applications to Proppant Placement During Hydraulic Fracturing Operations

Download Modeling of Solid Particle Transport in Fractures and Its Applications to Proppant Placement During Hydraulic Fracturing Operations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (137 download)

DOWNLOAD NOW!


Book Synopsis Modeling of Solid Particle Transport in Fractures and Its Applications to Proppant Placement During Hydraulic Fracturing Operations by : Yanan Ding

Download or read book Modeling of Solid Particle Transport in Fractures and Its Applications to Proppant Placement During Hydraulic Fracturing Operations written by Yanan Ding and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In addition to conventional enhanced oil recovery (EOR) technologies, extensive efforts have been made to explore new approaches to sustain the increasing global oil and gas consumption while lowering the operational costs. In recent decades, nanoparticles (NPs) have seen their promising potentials in recovering hydrocarbons from numerous laboratory experiments and field pilots. Also, hydraulic fracturing techniques have unlocked a significant quantity of hydrocarbon resources from unconventional reservoirs. Solid particle transport including NP transport, dispersion, and distribution in hydrocarbon reservoirs, proppant placement within hydraulic fractures, and sand production is critical to the efficient and effective hydrocarbon exploitation. Considering the petrophysical complexity as well as the intricate interactions among particles, fluids, and rock matrix, it is, therefore, an extremely challenging task to accurately predict the associated transport and placement behaviour of solid particles in a hydrocarbon reservoir. Theoretically, a robust and pragmatic method has been developed and validated to analytically determine the dynamic dispersion coefficients for particles flowing in a parallel-plate fracture with instantaneous point source as well as uniform and volumetric line sourcess, in which particle gravity settling effect has been considered. It is found that the point source and the uniform line source are respectively the most and least sensitive to the gravity effect. An increase of particle size larger than its critical value decreases the asymptotical dispersion coefficient for all the source conditions, while gravity settling promotes the dispersion phenomenon during the early-stage of point source condition. Particle-tracking simulations have been performed and validated on polydisperse dense particle transport in a randomly-orientated fracture with spatially variable apertures. The simulated results indicate that the mass breakthrough efficiency of particles and particle plume distribution in a randomly-orientated rough fracture are significantly influenced by different factors when particle gravity settling occurs. In addition, particle attachment consisting of reversible and irreversible adsorptions on an aperture surface is quantified applying the Derjaguin-Landau-Verwey-Overbeek (DLVO) kinetics. With sensitivity analysis performed, the impacts of different factors on particle attachment are found to vary with each other through non-unique patterns. By integrating the Perkins-Kern-Nordgren-Carter (PKN-C) fracture propagation model and the particle tracking algorithm, a novel Eulerian-Lagrangian (E-L) model has been developed and validated to simulate field-scale proppant transport during hydraulic fracturing operations. Such an E-L model incorporates pertinent empirical correlations determined from regressing experimental measurements regarding the proppant settling velocity and the drag/lift forces, which is applicable to both the Newtonian and non- Newtonian fluid conditions. The non-Newtonian fluid is usually found to yield a less "heel-biased" pattern of proppant distribution in a hydraulic fracture, e.g., a larger slurry coverage together with a longer proppant dune, while distinct patterns of the dominant factors are observed and evaluated.

Proppant Transport in Complex Fracture Networks

Download Proppant Transport in Complex Fracture Networks PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 320 pages
Book Rating : 4.:/5 (973 download)

DOWNLOAD NOW!


Book Synopsis Proppant Transport in Complex Fracture Networks by : Christopher Allen Johnson Blyton

Download or read book Proppant Transport in Complex Fracture Networks written by Christopher Allen Johnson Blyton and published by . This book was released on 2016 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current hydraulic fracturing practice in unconventional resource development typically involves multiple fracturing stages, each consisting of the simultaneous creation of several fractures from a horizontal well. A large mass of proppant, often millions of pounds per well, is injected with the fluid to provide post-closure conductivity. Despite the large quantity of proppant used and its critical importance to well productivity, simple models are often applied to determine its placement in fractures. Propped or effective fracture lengths indicated by modeling may be 100 to 300% larger than the lengths inferred from production data. A common assumption is that the average proppant velocity due to pressure driven flow is equal to the average carrier fluid velocity, while the settling velocity calculation uses Stokes’ law. To more accurately determine the placement of proppant in a fracture, it is necessary to rigorously account for many effects not included in the above assumptions. In this study, the motion of particles flowing with a fluid between fracture walls has been simulated using a coupled computational fluid dynamics and discrete element method (CFD-DEM) that rigorously accounts for the both aspects of the problem. These simulations determine individual particle trajectories as particle to particle and particle to wall collisions occur and include the effect of fluid flow. The results show that the proppant concentration and the ratio of proppant diameter to fracture width govern the relative velocity of proppant and fluid. Proppant settling velocity has been examined for small fracture widths to delineate the effect of several independent variables, including concentration. Simulations demonstrate that larger concentration increases the average settling velocity, in apparent contrast with much of the available literature, which indicates that increased concentration reduces settling velocity. However, this is due to the absence of displacement driven counter current fluid flow. This demonstrates that proppant settling in a hydraulic fracture is more complex than usually considered. A proppant transport model developed from the results of the direct numerical simulations and existing correlations for particle settling velocity has been incorporated into a fully three-dimensional hydraulic fracturing simulator. This simulator couples fracture geomechanics with fluid flow and proppant transport considerations to enable the fracture geometry and proppant distribution to be determined rigorously. Two engineering fracture design parameters, injection rate and proppant diameter, have been varied to show the effect on proppant placement. This allows for an understanding of the relative importance of each and optimization of the treatment to a particular application. The presence of natural fractures in unconventional reservoirs can significantly contribute to well productivity. As proppant is transported along a hydraulic fracture, the presence of a dilated natural fracture forms a fluid accepting branch and may result in proppant entry. The proportion of proppant transported into a branch at steady state has been determined using the CFD-DEM approach and is presented via a dimensionless ‘particle transport coefficient’ through normalization by the proportion of fluid flowing into the branch. Reynolds number at the inlet, branch aperture and the angle of orientation between the main slot and branch, particle size and concentration each affect the transport coefficient. A very different physical process, which controls particle transport into a branch under certain conditions, is the formation of a stable particle bridge preventing subsequent particle transport into the branch. This phenomenon was observed in several simulation cases. The complete set of equations for a three-dimensional formulation of rectangular displacement discontinuity elements has been used to determine the width distribution of a hydraulic fracture and dilated natural fracture. The widths have been determined for several combinations of stress anisotropy, net pressure, hydraulic fracture height and length. The effect of the length, height and orientation of the natural fracture and the elastic moduli of the rock have also been examined. Of the cases examined, many show that natural fracture dilation does not occur. Further, of those cases where dilation is apparent, the proppant transport efficiency corresponding to the natural fracture width is significantly less than one and in many cases zero due to size exclusion. The location and orientation of the natural fracture do not significantly affect its width, while its length and the elastic moduli of the rock substantially change the width.

A Model for Hydraulic Fracturing and Proppant Placement in Unconsolidated Sands

Download A Model for Hydraulic Fracturing and Proppant Placement in Unconsolidated Sands PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 390 pages
Book Rating : 4.:/5 (13 download)

DOWNLOAD NOW!


Book Synopsis A Model for Hydraulic Fracturing and Proppant Placement in Unconsolidated Sands by : Dongkeun Lee

Download or read book A Model for Hydraulic Fracturing and Proppant Placement in Unconsolidated Sands written by Dongkeun Lee and published by . This book was released on 2017 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing in unconsolidated or poorly consolidated formations has been used as a technique for well stimulation and for sand control. Although a large number of hydraulic fracturing operations have been performed in soft formations, the exact mechanisms of failure and fracture propagation remain an unresolved issue. Conventional hydraulic fracturing models based on the theory of linear elastic fracture mechanics (LEFM) consistently predict lower net fracturing pressure, smaller fracture widths and longer fracture lengths in soft formations than observed in the field. Operators who want to design and analyze frac-pack treatments routinely use a hard rock model and need to calibrate and often manipulate input parameters beyond a physically reasonable range to match the net fracturing pressure and well performance data. In this dissertation, we have developed a fully-coupled, three-dimensional hydraulic fracture model for poro-elasto-plastic materials and fluid flow coupled with proppant transport. A computational framework for fluid-structure interaction (FSI) based on finite volume method was developed for modeling of hydraulic fracturing and proppant placement in soft formations. Two separate domains, a fracture and a reservoir domain, are discretized individually, separate equations are solved in the two domains, and their interactions are modeled. The model includes the fully coupled process of power-law fluid flow inside the fracture with proppant transport, fluid leak-off from the fracture into the porous reservoir, pore pressure diffusion into the reservoir, inelastic deformation of the poro-elasto-plastic reservoir, and fracture propagation using a cohesive zone model along with a dynamic meshing procedure. Fully-coupled processes between the two domains, and pressure, flow and displacement coupling within each domain are modeled by an iterative and segregated solution procedure, where each component of the field variable is solved separately, consecutively, and iteratively. We verified the essential components of the model by comparing our simulation results with several well-known analytical solutions (elastoplastic deformation and failure problem, KGD model in a 2-D elastic domain, and KGD model in storage-toughness dominated regime). We applied the model to design and analyze frac-pack operations conducted in a Gulf of Mexico oilfield. Our model is capable of capturing the high net fracturing pressure commonly observed during frac-packing operations without adjusting any input parameters. The model shows quantitatively that plasticity causes lower stress concentration around the fracture tip which shields the tip of the propagating fracture from the fracturing pressure, and retards fracture growth. Our model predicts shorter fracture lengths and wider widths compared to a hard rock model. Shear failure around the fracture and ahead of the tip are modeled. Low cohesion sands tend to fail in shear first then in tension if sufficient pore pressure builds up. We investigated the effect of fluid viscosity, injection rate, and proppant diameter on fracture growth and proppant placement using sensitivity studies. Higher apparent fluid viscosity and injection rate results in wider fractures with better proppant placement, when the fracture is expected to be contained within the payzone. Utilizing larger diameter of proppant leads to settling-dominant proppant placement resulting in the formation of a proppant bank at the bottom of the induced fracture. The new frac-pack model for the first time allows operators to design and analyze hydraulic fracturing stimulations in soft, elastoplastic formations when complex fracturing fluids are used. Our results also provide guidelines for the selection of fracturing fluid rheology, proppant size, and injection rates.

Improvement of Fracture Conductivity Through Study of Proppant Transport and Chemical Stimulation

Download Improvement of Fracture Conductivity Through Study of Proppant Transport and Chemical Stimulation PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (131 download)

DOWNLOAD NOW!


Book Synopsis Improvement of Fracture Conductivity Through Study of Proppant Transport and Chemical Stimulation by : Songyang Tong

Download or read book Improvement of Fracture Conductivity Through Study of Proppant Transport and Chemical Stimulation written by Songyang Tong and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: During hydraulic fracturing treatments, proppants - usually sand - are placed inside fractures to improve fracture conductivity. However, a large portion of the generated hydraulic fractures often remain unpropped after fracturing treatments. There are two primary reasons for this poor proppant placement. First, proppants settle quickly in common fracturing fluids (e.g., slickwater), which results in unpropped sections at the tip or top of the fracture. Second, a large number of the microfractures are too narrow to accommodate any common commercial proppant. Such unpropped fractures hold a large potential flow capacity as they exhibit a large contact area with the reservoir. However, their potential flow capacity is diminished during production due to closing of unpropped fractures because of closure stress. In this study, fractures are categorized as wider fractures, which are accessible to proppant, and narrower fractures, which are inaccessible to proppant. For wider fractures, proppant transport is important as proppant is needed for keeping them open. For narrower fractures, a chemical formulation is proposed as there is less physical restriction for fluids to flow inside across them. The chemical formulation is expected to improve fracture conductivity by generating roughness on fracture surfaces. This dissertation uses experiments and simulations to investigate proppant transport in a complex fracture network with laboratory-scale transparent fracture slots. Proppant size, injection flow rate and bypass fracture angle are varied and their effects are systematically evaluated. Based on experimental results, a straight-line relationship can be used to quantify the fraction of proppant that flows into bypass fractures with the total amount of proppant injected. A Computational Fluid Dynamics (CFD) model is developed to simulate the experiments; both qualitative and quantitative matches are achieved with this model. It is concluded that the fraction of proppant which flows into bypass fractures could be small unless a significant amount of proppant is injected, which indicates the inefficiency of slickwater in transporting proppant. An alternative fracturing fluid - foam - has been proposed to improve proppant placement because of its proppant carrying capacity. Foam is not a single-phase fluid, and it suffers liquid drainage with time due to gravity. Additionally, the existence of foam bubbles and lamellae could alter the movement of proppants. Experiments and simulations are performed to evaluate proppant placement in field-scale foam fracturing application. A liquid drainage model and a proppant settling correlation are developed and incorporated into an in-housing fracturing simulator. Results indicate that liquid drainage could negatively affect proppant placement, while dry foams could lead to negligible proppant settling and consequently uniform proppant placement. For narrower fractures, two chemical stimulation techniques are proposed to improve fracture conductivity by increasing fracture surface roughness. The first is a nanoparticle-microencapsulated acid (MEA) system for shale acidizing applications, and the second is a new technology which can generate mineral crystals on the shale surface to act as in-situ proppants. The MEA could be released as the fracture closes and the released acid could etch the surface of the rock locally, in a non-uniform way, to improve fracture conductivity (up to 40 times). Furthermore, the in-situ proppant generation technology can lead to crystal growth in both fracking water and formation brine conditions, and it also improves fracture conductivity (up to 10 times) based on core flooding experiments

New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro-mechanical coupling effects

Download New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro-mechanical coupling effects PDF Online Free

Author :
Publisher : Cuvillier Verlag
ISBN 13 : 3736946562
Total Pages : 172 pages
Book Rating : 4.7/5 (369 download)

DOWNLOAD NOW!


Book Synopsis New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro-mechanical coupling effects by : Lei Zhou

Download or read book New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro-mechanical coupling effects written by Lei Zhou and published by Cuvillier Verlag. This book was released on 2014-03-20 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, two new numerical approaches for hydraulic fracturing in tight reservoir were developed. A more physical-based numerical 3D-model was developed for simulating the whole hydraulic fracturing process including fracture propagation, closure and contact as well as proppant transport and settling. In this approach rock formation, pore and fracture systems were assembled together, in which hydro-mechanical coupling effect, proppant transport and settling as well as their influences on fracture closure and contact were fully considered. A combined FDM and FVM schema was used to solve the problem. Three applications by using the new approach were presented. The results illustrated the whole hydraulic fracturing process well and seemed to be logical, which confirmed the ability of the developed approach to model the in-situ hydraulic fracturing operation from injection start till fully closure. In order to investigate the orientation problem of hydraulic fracturing in tight reservoir, a new approach for simulating arbitrary fracture propagation and orientation in 2D was developed. It was solved by a hybrid schema of XFEM and FVM. Three numerical studies were illustrated, which proved the ability of the developed approach to solve the orientation problem in field cases.

Numerical Simulation of Proppant Displacement in Scaled Fracture Networks

Download Numerical Simulation of Proppant Displacement in Scaled Fracture Networks PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation of Proppant Displacement in Scaled Fracture Networks by : Yibo Song

Download or read book Numerical Simulation of Proppant Displacement in Scaled Fracture Networks written by Yibo Song and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: While hydraulic fracturing is recognized as the most effective stimulation technique for unconventional reservoirs, the production enhancement is influenced by several factors including proppant placement inside the fractures. The goal of this work is to understand the proppant transport and its placement process in "T" shaped fracture network through simulations. The proppant transport is studied numerically by coupling a computational fluid dynamic model for the base shear-thinning fluid and the discrete element methods for proppant particles. In the CFD model, the forces on proppants are calculated based on fluid properties, while fluid properties are updated based on the particle concentration at any point and time. In the DEM model, the motion and position of each individual proppant is calculated based on the gravity and drag forces from the CFD model, which makes it possible to reproduce some phenomena that cannot be simulated in continuum concentration-oriented models. A scaling analysis has been performed to scale down the model from field scale to lab scale by deriving relevant dimensionless variables. Different proppant size distributions and injection velocities are considered, as well as the friction and cohesion effects among particle and fracture surface. The simulation results show that in the primary fracture, the injected proppants could divide into three layers: the bottom sand bed zone, the middle surface rolling zone, and the top slurry flow zone. The total number of the proppants do not increase much after the sand dune reach an equilibrium height. A smaller size proppant would benefit the development of sand dune in the secondary fracture, whereas a larger proppant size would benefit the increase rate of the sand dune. The equilibrium height of sand dune in the minor fracture could be greater than the primary fracture, and the distribution of proppant dunes is symmetric. A lower proppant load would amplify the impact of friction as well as the erosion force, which would finally deliver a negative impact on equilibrium height. Two deposit mechanisms have also identified in the bypass fracture network.

Integrated 3-dimensional Modeling of Proppant Transport Through Hydraulic Fracture Network in Shale Gas Reservoir

Download Integrated 3-dimensional Modeling of Proppant Transport Through Hydraulic Fracture Network in Shale Gas Reservoir PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (959 download)

DOWNLOAD NOW!


Book Synopsis Integrated 3-dimensional Modeling of Proppant Transport Through Hydraulic Fracture Network in Shale Gas Reservoir by : Oliver Chang

Download or read book Integrated 3-dimensional Modeling of Proppant Transport Through Hydraulic Fracture Network in Shale Gas Reservoir written by Oliver Chang and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is one of the most successful and widely applied techniques that ensure economic recovery from unconventional reservoirs. Oil and gas bearing formation has pre-existing natural fractures and possesses a large proportion in hydrocarbon resources. Distinct fracture propagational behavior and operational variation both affect the entire hydraulic fracturing treatment. Proppant transport and fracture network conductivity are the most significant factors determining the effectiveness of a treatment. The concept of stimulated reservoir volume (SRV) is used to characterize the efficiency of hydraulic fracturing treatment. However, the unpropped fracture will close after the well starts to produce without contributing hydrocarbon recovery. Only the propped open section of fracture contributes to the hydrocarbon recovery. Therefore, the concept of propped open stimulated reservoir volume (PSRV) is proposed to characterize the effectiveness of the treatment. Physics of proppant transport in a complex fracture network is unclear to the engineers. Most of the model simulates using simplified physics. In this work, we first identified the patterns of proppant transport and we developed equations to quantify the governing physics in each pattern, in order to capture the proppant transport process accurately. To quantify the PSRV, a dynamic 3-D, finite-difference, proppant transport model is developed and linked to a hydraulic fracture propagation model to simulate the process of proppant transport through the hydraulic fracture network. The actual propped open stimulated reservoir volume (PSRV) and fracture network conductivity can be quantified by utilizing the model. The goal of this study is to generate guidelines to maximize the effectiveness of the hydraulic fracturing treatment. Hence, a systematic parametric study was conducted to investigate the relation among engineering factors, geomechanical and reservoir properties. The effect of each parameter on PSRV, PSRV/SRV efficiency ratio, and average fracture conductivity during pressure pumping, flowback and shut-in is evaluate and quantified. Guidelines to optimize the effectiveness of hydraulic fracturing treatment for different scenarios are established based on the systematic parametric study.

Role of Fluid Elasticity and Viscous Instabilities in Proppant Transport in Hydraulic Fractures

Download Role of Fluid Elasticity and Viscous Instabilities in Proppant Transport in Hydraulic Fractures PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Role of Fluid Elasticity and Viscous Instabilities in Proppant Transport in Hydraulic Fractures by : Sahil Malhotra

Download or read book Role of Fluid Elasticity and Viscous Instabilities in Proppant Transport in Hydraulic Fractures written by Sahil Malhotra and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents an experimental investigation of fluid flow, proppant settling and horizontal proppant transport in hydraulic fractures. The work is divided into two major sections: investigation of proppant settling in polymer-free surfactant-based viscoelastic (VES) fluids and development of a new method of proppant injection, referred to as Alternate-Slug fracturing. VES fluid systems have been used to eliminate polymer-based damage and to efficiently transport proppant into the fracture. Current models and correlations neglect the important influence of fracture walls and fluid elasticity on proppant settling. Experimental data is presented to show that elastic effects can increase or decrease the settling velocity of particles, even in the creeping flow regime. Experimental data shows that significant drag reduction occurs at low Weissenberg number, followed by a transition to drag enhancement at higher Weissenberg numbers. A new correlation is presented for the sphere settling velocity in unbounded viscoelastic fluids as a function of the fluid rheology and the proppant properties. The wall factors for sphere settling velocities in viscoelastic fluids confined between solid parallel plates (fracture walls) are calculated from experimental measurements made on these fluids over a range of Weissenberg numbers. Results indicate that elasticity reduces the retardation effect of the confining walls and this reduction is more pronounced at higher ratios of the particle diameter to spacing between the walls. Shear thinning behavior of fluids is also observed to reduce the retardation effect of the confining walls. A new empirical correlation for wall factors for spheres settling in a viscoelastic fluid confined between two parallel walls is presented. An experimental study on proppant placement using a new method of fracturing referred to as Alternate-Slug fracturing is presented. This method involves alternate injection of low viscosity and high viscosity fluids into the fracture, with proppant pumped in the low viscosity fluid. Experiments are conducted in Hele-Shaw cells to study the growth of viscous fingers over a wide range of viscosity ratios. Data is presented to show that the viscous finger velocities and mixing zone velocities increase with viscosity ratio up to viscosity ratios of about 350 and the trend is consistent with Koval's theory. However, at higher viscosity ratios the mixing zone velocity values plateau signifying no further effect of viscosity contrast on the growth of fingers and mixing zone. The plateau in the velocities at high viscosity ratios is caused by an increase in the thickness of the displacing fluid and a reduction in the thin film of the displaced fluid on the walls of the Hele-Shaw cell. Fluid elasticity is observed to retard the growth of fingers and leads to growth of multiple thin fingers as compared to a single thick dominant finger in less elastic fluids. Observations show the shielding effect is reduced by fluid elasticity. Elastic effects are observed to reduce the thickness of thin film of displaced fluid on the walls of Hele-Shaw cell. The dominant wave number for the growth of instabilities is observed to be higher in more elastic fluids. At the onset of instability, the interface breaks down into a greater number of fingers in more elastic fluids. Experiments are performed in simulated fractures (slot cells) to show the proppant distribution using alternate-slug fracturing. Observations show alternate-slug fracturing ensures deeper placement of proppant through two primary mechanisms: (a) proppant transport in viscous fingers formed by the low viscosity fluid and (b) an increase in drag force in the polymer slug leading to better entrainment and displacement of any proppant banks that may have formed. The method offers advantages of lower polymer costs, lower pumping horsepower, smaller fracture widths, better control of fluid leak-off and less gel damage compared to conventional gel fracs.

A Theoretical Simulation of the Settling of Proppants in a Hydraulic Fracturing Process

Download A Theoretical Simulation of the Settling of Proppants in a Hydraulic Fracturing Process PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 220 pages
Book Rating : 4.:/5 (951 download)

DOWNLOAD NOW!


Book Synopsis A Theoretical Simulation of the Settling of Proppants in a Hydraulic Fracturing Process by : Nisreen Ali Hussein Alseamr

Download or read book A Theoretical Simulation of the Settling of Proppants in a Hydraulic Fracturing Process written by Nisreen Ali Hussein Alseamr and published by . This book was released on 2016 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is a process for the extraction of hydrocarbons from underground formations. It involves pumping a specialized fluid into the wellbore under high pressures to form and support fractures in the rock. Fracturing stimulates the well to increase the production of oil and the natural gas which are the pillars of the energy economy. Key to this process is the use of proppants, which are solid materials used to keep the fractures open. Understanding the transport of proppant particles through a fluid is important to improve the efficiency and reduce environmental impact of fracturing. An increase of the settling velocity for instance, will impede the hydraulic fracturing process by reducing well productivity, or necessitate use of chemical additives. This thesis presents a theoretical investigation of the settling velocity of proppant particles. The effect of different parameters on the settling velocity were studied by manipulating the main factors that can influence particle transport. These include size of the particle (300 [micro]m- 2000 [micro]m), sphericity, density (1200 kg/m3-3500 kg/m3) and concentration. These typical values were obtained from commercially available proppants currently used in industry. Various correlations were investigated, assuming the carrier (fracturing) fluid to be an ideal Newtonian and as a power law (non-Newtonian) fluid. This will help predict the settling velocity for proppant particles in order to increase well productivity, and improve hydraulic fracturing efficiency. The models show that changing the carrier fluid viscosity and particle properties such as diameter, density, sphericity, and concentration leads to a significant change in the proppant settling velocity. For instance, reduction in particle size, density, and sphericity tend to reduce the settling velocity, while increasing the concentration of the particles and the fluid viscosity reduce the settling velocity.

Hydraulic Proppant Fracturing and Gravel Packing

Download Hydraulic Proppant Fracturing and Gravel Packing PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080868843
Total Pages : 1277 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic Proppant Fracturing and Gravel Packing by : D. Mader

Download or read book Hydraulic Proppant Fracturing and Gravel Packing written by D. Mader and published by Elsevier. This book was released on 1989-03-01 with total page 1277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many aspects of hydraulic proppant fracturing have changed since its innovation in 1947. The main significance of this book is its combination of technical and economical aspects to provide an integrated overview of the various applications of proppants in hydraulic fracturing, and gravel in sand control. The monitoring of fractures and gravel packs by well-logging and seismic techniques is also included.The book's extensive coverage of the subject should be of special interest to reservoir geologists and engineers, production engineers and technologists, and well log analysts.

Effect of Fracture Heterogeneity on Proppant Transport and Settling Mechanism

Download Effect of Fracture Heterogeneity on Proppant Transport and Settling Mechanism PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 104 pages
Book Rating : 4.:/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Effect of Fracture Heterogeneity on Proppant Transport and Settling Mechanism by : Dhurgham Abdulameer Kadhim

Download or read book Effect of Fracture Heterogeneity on Proppant Transport and Settling Mechanism written by Dhurgham Abdulameer Kadhim and published by . This book was released on 2017 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Proppant transport modeling through fractures with slickwater fluid systems assumes uniform and homogeneous fracture widths by implying constant fluid behavior at wall boundaries. Hydraulic fracturing mineback operations have demonstrated that induced fractures are heterogeneous and varying in width. This work investigates the impact of fracture width heterogeneity, roughness, and leak-off on ceramic proppant transport and settling, using proppant distribution concepts of Equilibrium Dune Level (EDL) and equilibrium Dune Length (EDX). Experimental work was conducted to investigate the impact of fracture width heterogeneity by varying fracture width along two plexiglass sheets. To mimic actual hydraulic fractures, the injection side was designed as the largest width, and the width of the opposite end was reduced. The ratio between the injection and tip side widths was varied to study the effect of changing fracture width. One ratio was used as a base to study the effect of varying wall roughness and leak-off on the proppant placement. Results of this work demonstrate the impacts of reservoir heterogeneity, wall roughness, and leak off on proppant conveyance and distribution. Fracture width and wall roughness have a significant effect on proppant distribution along a fracture. Increasing width heterogeneity and roughness provide a better proppant distribution and thus better fracture propped conductivity. The effect of leak-off on proppant distribution was monitored, and it showed that proppant followed water movement. Consequently, average water volume that left the slot was affected by proppant distribution"--Abstract, page iii.

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications

Download Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351796283
Total Pages : 259 pages
Book Rating : 4.3/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications by : Xinpu Shen

Download or read book Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications written by Xinpu Shen and published by CRC Press. This book was released on 2017-03-27 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Mechanics of Hydraulic Fracturing

Download Mechanics of Hydraulic Fracturing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119742455
Total Pages : 291 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Mechanics of Hydraulic Fracturing by : Xi Zhang

Download or read book Mechanics of Hydraulic Fracturing written by Xi Zhang and published by John Wiley & Sons. This book was released on 2022-12-15 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics of Hydraulic Fracturing Comprehensive single-volume reference work providing an overview of experimental results and predictive methods for hydraulic fracture growth in rocks Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring provides a summary of the research in mechanics of hydraulic fractures during the past two decades, plus new research trends to look for in the future. The book covers the contributions from theory, modeling, and experimentation, including the application of models to reservoir stimulation, mining preconditioning, and the formation of geological structures. The four expert editors emphasize the variety of diverse methods and tools in hydraulic fracturing and help the reader understand hydraulic fracture mechanics in complex geological situations. To aid in reader comprehension, practical examples of new approaches and methods are presented throughout the book. Key topics covered in the book include: Prediction of fracture shapes, sizes, and distributions in sedimentary basins, plus their importance in petroleum industry Real-time monitoring methods, such as micro-seismicity and trace tracking How to uncover geometries of fractures like dikes and veins Fracture growth of individual foundations and its applications Researchers and professionals working in the field of fluid-driven fracture growth will find immense value in this comprehensive reference on hydraulic fracturing mechanics.

Development of Computationally Efficient 2D and Pseudo-3D Multi-fracture Models with Applications to Fracturing and Refracturing

Download Development of Computationally Efficient 2D and Pseudo-3D Multi-fracture Models with Applications to Fracturing and Refracturing PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 580 pages
Book Rating : 4.:/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Development of Computationally Efficient 2D and Pseudo-3D Multi-fracture Models with Applications to Fracturing and Refracturing by : Sophie Shiting Yi

Download or read book Development of Computationally Efficient 2D and Pseudo-3D Multi-fracture Models with Applications to Fracturing and Refracturing written by Sophie Shiting Yi and published by . This book was released on 2018 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-stage hydraulic fracturing is one of the key technologies of the U.S. tight oil and shale gas revolution. Recently, fracture diagnostic methods revealed that the fracture propagation could be quite uneven when stimulating multiple fractures simultaneously. As a result, only 64% of the perforated clusters contribute to production. Promoting uniform fracture propagation, ensuring that all perforation clusters receive treatment would be a big step in improving oil recovery in shale reservoirs. The dissertation reports the development of computationally efficient, 2D and Pseudo-3D multi-fracture models. Novel methods are developed to solve the dynamic fluid and proppant partitioning among multiple perforation clusters. The Resistance Method is developed to distribute fluid among fractures. This new method could be more computationally efficient than the widely adopted Newton-Raphson Method. The Particle Transport Efficiency (PTE) correlations are implicitly incorporated into the multi-fracture models to compute proppant distribution among the fractures. It is shown that the inertial effect tends to accumulate proppant particles downstream in the wellbore while fluid leaks off from the perforations, leading to pre-mature screen out of toe-side clusters, and the heel-biased final treatment distribution. The model has been applied to two important unconventional reservoir stimulation technologies: the plug-and-perf operation and horizontal well refracturing. We investigate how parameters including the number of perforations, the size of the perforation, the injection rate and so on affect the final fluid and proppant distribution. Directional suggestions are provided regarding each parameter. An automated process to search for the optimum plug-and-perf design within the user-specified parameter range was developed. It is shown that when multiple parameters are optimized together, the propped surface area can be improved greatly. We simulated horizontal well refracturing operations employing diverting agents with the model. Two field cases were studied, and the simulation workflow of initial completion – pore pressure depletion – refracturing was carried out for both cases. Our simulation results match the field diagnostic observations well. We successfully captured the heel-biased refrac treatment distribution, and showed that both new and existing perforations can effectively break down during refrac. Strategies have been developed to improve refrac success.

Numerical Modeling of Complex Hydraulic Fracture Propagation in Layered Reservoirs with Auto-optimization

Download Numerical Modeling of Complex Hydraulic Fracture Propagation in Layered Reservoirs with Auto-optimization PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (134 download)

DOWNLOAD NOW!


Book Synopsis Numerical Modeling of Complex Hydraulic Fracture Propagation in Layered Reservoirs with Auto-optimization by : Jiacheng Wang (Ph. D.)

Download or read book Numerical Modeling of Complex Hydraulic Fracture Propagation in Layered Reservoirs with Auto-optimization written by Jiacheng Wang (Ph. D.) and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing brings economic unconventional reservoir developments, and multi-cluster completion designs result in complex hydraulic fracture geometries. Therefore, accurate yet efficient modeling of the propagation of multiple non-planar hydraulic fractures is desired to study the mechanisms of hydraulic fracture propagation and optimize field completion designs. In this research, a novel hydraulic fracture model is developed to simulate the propagation of multiple hydraulic fractures with proppant transport in layered and naturally fractured reservoirs. The simplified three-dimensional displacement discontinuity method (S3D DDM) is enhanced to compute the hydraulic fracture deformation and propagation with analytical fracture height growth and vertical width variation. Using a single row of DDM elements, the enhanced S3D DDM hydraulic fracture model computes the fully 3D geometries with a similar computational intensity to a 2D model. Then an Eulerian-Lagrangian proppant transport model is developed, where the slurry flow rate and pressure are solved within the Eulerian regime, and the movement of solid proppant particles is solved within the Lagrangian regime. The adaptive proppant gridding scheme in the model allows a smaller grid size at the earlier fracturing stage for higher resolution and a larger grid size at the later fracturing stage for higher efficiency. Besides the physical model, an optimization module that utilizes advanced optimization algorithms such as genetic algorithm (GA) and pattern search algorithm (PSA) is proposed to automatically optimize the completion designs according to the preset targets. Numerical results show that hydraulic fracture propagation is under the combined influence of the in-situ stress, pumping schedule, natural fractures, and cluster placement. Hence, numerical simulation is needed to predict complex hydraulic fracture geometries under various geologic and completion settings. The complex hydraulic fracture geometries, together with fracturing fluid and proppant properties, also affect proppant placement. Moreover, the stress contrast at layer interfaces can cause proppant bridging and form barriers on the proppant transport path. The optimized completion designs increase effective hydraulic and propped areas, but they vary depending on the optimization targets. The developed hydraulic fracture model provides insights into the hydraulic fracturing process and benefits unconventional reservoir development

Mathematical Theory of Oil and Gas Recovery

Download Mathematical Theory of Oil and Gas Recovery PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401722056
Total Pages : 596 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Theory of Oil and Gas Recovery by : P. Bedrikovetsky

Download or read book Mathematical Theory of Oil and Gas Recovery written by P. Bedrikovetsky and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is a pleasure to be asked to write the foreword to this interesting new book. When Professor Bedrikovetsky first accepted my invitation to spend an extended sabbatical period in the Department of Mineral Resources Engineering at Imperial College of Science, Technology and Medicine, I hoped it would be a period of fruitful collaboration. This book, a short course and a variety of technical papers are tangible evidence of a successful stay in the UK. I am also pleased that Professor Bedrikovetsky acted on my suggestion to publish this book with Kluwer as part of the petroleum publications for which I am Series Editor. The book derives much of its origin from the unpublished Doctor of Science thesis which Professor Bedrikovetsky prepared in Russian while at the Gubkin Institute. The original DSc contained a number of discrete publications unified by an analytical mathematics approach to fluid flow in petroleum reservoirs. During his sabbatical stay at Imperial College, Professor Bedrikovetsky has refined and extended many of the chapters and has discussed each one with internationally recognised experts in the field. He received great encouragement and editorial advice from Dr Gren Rowan, who pioneered analytical methods in reservoir modelling at BP for many years.

Proppant Transport Down a Three-dimensional Planar Fracture

Download Proppant Transport Down a Three-dimensional Planar Fracture PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 402 pages
Book Rating : 4.:/5 (216 download)

DOWNLOAD NOW!


Book Synopsis Proppant Transport Down a Three-dimensional Planar Fracture by : Zillur Rahim

Download or read book Proppant Transport Down a Three-dimensional Planar Fracture written by Zillur Rahim and published by . This book was released on 1988 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: