Mod Two Homology and Cohomology

Download Mod Two Homology and Cohomology PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319093541
Total Pages : 539 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Mod Two Homology and Cohomology by : Jean-Claude Hausmann

Download or read book Mod Two Homology and Cohomology written by Jean-Claude Hausmann and published by Springer. This book was released on 2015-01-08 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cohomology and homology modulo 2 helps the reader grasp more readily the basics of a major tool in algebraic topology. Compared to a more general approach to (co)homology this refreshing approach has many pedagogical advantages: 1. It leads more quickly to the essentials of the subject, 2. An absence of signs and orientation considerations simplifies the theory, 3. Computations and advanced applications can be presented at an earlier stage, 4. Simple geometrical interpretations of (co)chains. Mod 2 (co)homology was developed in the first quarter of the twentieth century as an alternative to integral homology, before both became particular cases of (co)homology with arbitrary coefficients. The first chapters of this book may serve as a basis for a graduate-level introductory course to (co)homology. Simplicial and singular mod 2 (co)homology are introduced, with their products and Steenrod squares, as well as equivariant cohomology. Classical applications include Brouwer's fixed point theorem, Poincaré duality, Borsuk-Ulam theorem, Hopf invariant, Smith theory, Kervaire invariant, etc. The cohomology of flag manifolds is treated in detail (without spectral sequences), including the relationship between Stiefel-Whitney classes and Schubert calculus. More recent developments are also covered, including topological complexity, face spaces, equivariant Morse theory, conjugation spaces, polygon spaces, amongst others. Each chapter ends with exercises, with some hints and answers at the end of the book.

Lecture Notes in Algebraic Topology

Download Lecture Notes in Algebraic Topology PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470473682
Total Pages : 385 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes in Algebraic Topology by : James F. Davis

Download or read book Lecture Notes in Algebraic Topology written by James F. Davis and published by American Mathematical Society. This book was released on 2023-05-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

Cohomology Operations and Applications in Homotopy Theory

Download Cohomology Operations and Applications in Homotopy Theory PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486466647
Total Pages : 226 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Cohomology Operations and Applications in Homotopy Theory by : Robert E. Mosher

Download or read book Cohomology Operations and Applications in Homotopy Theory written by Robert E. Mosher and published by Courier Corporation. This book was released on 2008-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cohomology operations are at the center of a major area of activity in algebraic topology. This treatment explores the single most important variety of operations, the Steenrod squares. It constructs these operations, proves their major properties, and provides numerous applications, including several different techniques of homotopy theory useful for computation. 1968 edition.

The Wild World of 4-Manifolds

Download The Wild World of 4-Manifolds PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821837494
Total Pages : 642 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis The Wild World of 4-Manifolds by : Alexandru Scorpan

Download or read book The Wild World of 4-Manifolds written by Alexandru Scorpan and published by American Mathematical Soc.. This book was released on 2005-05-10 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: What a wonderful book! I strongly recommend this book to anyone, especially graduate students, interested in getting a sense of 4-manifolds. --MAA Reviews The book gives an excellent overview of 4-manifolds, with many figures and historical notes. Graduate students, nonexperts, and experts alike will enjoy browsing through it. -- Robion C. Kirby, University of California, Berkeley This book offers a panorama of the topology of simply connected smooth manifolds of dimension four. Dimension four is unlike any other dimension; it is large enough to have room for wild things to happen, but small enough so that there is no room to undo the wildness. For example, only manifolds of dimension four can exhibit infinitely many distinct smooth structures. Indeed, their topology remains the least understood today. To put things in context, the book starts with a survey of higher dimensions and of topological 4-manifolds. In the second part, the main invariant of a 4-manifold--the intersection form--and its interaction with the topology of the manifold are investigated. In the third part, as an important source of examples, complex surfaces are reviewed. In the final fourth part of the book, gauge theory is presented; this differential-geometric method has brought to light how unwieldy smooth 4-manifolds truly are, and while bringing new insights, has raised more questions than answers. The structure of the book is modular, organized into a main track of about two hundred pages, augmented by extensive notes at the end of each chapter, where many extra details, proofs and developments are presented. To help the reader, the text is peppered with over 250 illustrations and has an extensive index.

Cohomology of Finite Groups

Download Cohomology of Finite Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662062828
Total Pages : 333 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Cohomology of Finite Groups by : Alejandro Adem

Download or read book Cohomology of Finite Groups written by Alejandro Adem and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The cohomology of groups has, since its beginnings in the 1920s and 1930s, been the stage for significant interaction between algebra and topology and has led to the creation of important new fields in mathematics, like homological algebra and algebraic K-theory. This is the first book to deal comprehensively with the cohomology of finite groups: it introduces the most important and useful algebraic and topological techniques, and describes the interplay of the subject with those of homotopy theory, representation theory and group actions. The combination of theory and examples, together with the techniques for computing the cohomology of important classes of groups including symmetric groups, alternating groups, finite groups of Lie type, and some of the sporadic simple groups, enable readers to acquire an in-depth understanding of group cohomology and its extensive applications.

Complex Cobordism and Stable Homotopy Groups of Spheres

Download Complex Cobordism and Stable Homotopy Groups of Spheres PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082182967X
Total Pages : 418 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Complex Cobordism and Stable Homotopy Groups of Spheres by : Douglas C. Ravenel

Download or read book Complex Cobordism and Stable Homotopy Groups of Spheres written by Douglas C. Ravenel and published by American Mathematical Soc.. This book was released on 2003-11-25 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.

Elements of Homotopy Theory

Download Elements of Homotopy Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461263182
Total Pages : 764 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Elements of Homotopy Theory by : George W. Whitehead

Download or read book Elements of Homotopy Theory written by George W. Whitehead and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the title suggests, this book is concerned with the elementary portion of the subject of homotopy theory. It is assumed that the reader is familiar with the fundamental group and with singular homology theory, including the Universal Coefficient and Kiinneth Theorems. Some acquaintance with manifolds and Poincare duality is desirable, but not essential. Anyone who has taught a course in algebraic topology is familiar with the fact that a formidable amount of technical machinery must be introduced and mastered before the simplest applications can be made. This phenomenon is also observable in the more advanced parts of the subject. I have attempted to short-circuit it by making maximal use of elementary methods. This approach entails a leisurely exposition in which brevity and perhaps elegance are sacrificed in favor of concreteness and ease of application. It is my hope that this approach will make homotopy theory accessible to workers in a wide range of other subjects-subjects in which its impact is beginning to be felt. It is a consequence of this approach that the order of development is to a certain extent historical. Indeed, if the order in which the results presented here does not strictly correspond to that in which they were discovered, it nevertheless does correspond to an order in which they might have been discovered had those of us who were working in the area been a little more perspicacious.

Cohomology of Groups

Download Cohomology of Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468493272
Total Pages : 318 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Cohomology of Groups by : Kenneth S. Brown

Download or read book Cohomology of Groups written by Kenneth S. Brown and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.

An Introduction to Homological Algebra

Download An Introduction to Homological Algebra PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 113964307X
Total Pages : 470 pages
Book Rating : 4.1/5 (396 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Homological Algebra by : Charles A. Weibel

Download or read book An Introduction to Homological Algebra written by Charles A. Weibel and published by Cambridge University Press. This book was released on 1995-10-27 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.

Implications in Morava $K$-Theory

Download Implications in Morava $K$-Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821823426
Total Pages : 118 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Implications in Morava $K$-Theory by : Richard M. Kane

Download or read book Implications in Morava $K$-Theory written by Richard M. Kane and published by American Mathematical Soc.. This book was released on 1986 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper studies the mod 2 cohomology [italic]H*[italic]X of finite [italic]H-spaces. It is shown that when [italic]X is connected and simply connected then [italic]H*[italic]X has no indecomposables of even degree. As a consequence, [italic]H*([capital Greek]Omega[italic]X;[bold]Z) and [italic]K*[italic]X have no 2 torsion. The main result is proved by using Morava [script]K-theory.

From Calculus to Cohomology

Download From Calculus to Cohomology PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521589567
Total Pages : 302 pages
Book Rating : 4.5/5 (895 download)

DOWNLOAD NOW!


Book Synopsis From Calculus to Cohomology by : Ib H. Madsen

Download or read book From Calculus to Cohomology written by Ib H. Madsen and published by Cambridge University Press. This book was released on 1997-03-13 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook on cohomology and curvature with emphasis on applications.

Lecture Notes on Motivic Cohomology

Download Lecture Notes on Motivic Cohomology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821838471
Total Pages : 240 pages
Book Rating : 4.8/5 (384 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes on Motivic Cohomology by : Carlo Mazza

Download or read book Lecture Notes on Motivic Cohomology written by Carlo Mazza and published by American Mathematical Soc.. This book was released on 2006 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).

A Guide to the Classification Theorem for Compact Surfaces

Download A Guide to the Classification Theorem for Compact Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642343643
Total Pages : 184 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis A Guide to the Classification Theorem for Compact Surfaces by : Jean Gallier

Download or read book A Guide to the Classification Theorem for Compact Surfaces written by Jean Gallier and published by Springer Science & Business Media. This book was released on 2013-02-05 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a comprehensive insight into the subject. Its dedicated, student-centred approach details a near-complete proof of this theorem, widely admired for its efficacy and formal beauty. The authors present the technical tools needed to deploy the method effectively as well as demonstrating their use in a clearly structured, worked example. Ideal for students whose mastery of algebraic topology may be a work-in-progress, the text introduces key notions such as fundamental groups, homology groups, and the Euler-Poincaré characteristic. These prerequisites are the subject of detailed appendices that enable focused, discrete learning where it is required, without interrupting the carefully planned structure of the core exposition. Gently guiding readers through the principles, theory, and applications of the classification theorem, the authors aim to foster genuine confidence in its use and in so doing encourage readers to move on to a deeper exploration of the versatile and valuable techniques available in algebraic topology.

Acyclic Models

Download Acyclic Models PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821828770
Total Pages : 194 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Acyclic Models by : Michael Barr

Download or read book Acyclic Models written by Michael Barr and published by American Mathematical Soc.. This book was released on 2002 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acyclic models is a method heavily used to analyze and compare various homology and cohomology theories appearing in topology and algebra. This book is the first attempt to put together in a concise form this important technique and to include all the necessary background. It presents a brief introduction to category theory and homological algebra. The author then gives the background of the theory of differential modules and chain complexes over an abelian category to state the main acyclic models theorem, generalizing and systemizing the earlier material. This is then applied to various cohomology theories in algebra and topology. The volume could be used as a text for a course that combines homological algebra and algebraic topology. Required background includes a standard course in abstract algebra and some knowledge of topology. The volume contains many exercises. It is also suitable as a reference work for researchers.

A Concise Course in Algebraic Topology

Download A Concise Course in Algebraic Topology PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 9780226511832
Total Pages : 262 pages
Book Rating : 4.5/5 (118 download)

DOWNLOAD NOW!


Book Synopsis A Concise Course in Algebraic Topology by : J. P. May

Download or read book A Concise Course in Algebraic Topology written by J. P. May and published by University of Chicago Press. This book was released on 1999-09 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Homotopy Invariant Algebraic Structures

Download Homotopy Invariant Algebraic Structures PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082181057X
Total Pages : 392 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Homotopy Invariant Algebraic Structures by : Jean-Pierre Meyer

Download or read book Homotopy Invariant Algebraic Structures written by Jean-Pierre Meyer and published by American Mathematical Soc.. This book was released on 1999 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of the conference held in honor of J. Michael Boardman's 60th birthday. It brings into print his classic work on conditionally convergent spectral sequences. Over the past 30 years, it has become evident that some of the deepest questions in algebra are best understood against the background of homotopy theory. Boardman and Vogt's theory of homotopy-theoretic algebraic structures and the theory of spectra, for example, were two benchmark breakthroughs underlying the development of algebraic $K$-theory and the recent advances in the theory of motives. The volume begins with short notes by Mac Lane, May, Stasheff, and others on the early and recent history of the subject. But the bulk of the volume consists of research papers on topics that have been strongly influenced by Boardman's work. Articles give readers a vivid sense of the current state of the theory of "homotopy-invariant algebraic structures". Also included are two major foundational papers by Goerss and Strickland on applications of methods of algebra (i.e., Dieudonné modules and formal schemes) to problems of topology. Boardman is known for the depth and wit of his ideas. This volume is intended to reflect and to celebrate those fine characteristics.

Singular Intersection Homology

Download Singular Intersection Homology PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107150744
Total Pages : 823 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Singular Intersection Homology by : Greg Friedman

Download or read book Singular Intersection Homology written by Greg Friedman and published by Cambridge University Press. This book was released on 2020-09-24 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first expository book-length introduction to intersection homology from the viewpoint of singular and piecewise linear chains.