Minimal Submanifolds and Geodesics

Download Minimal Submanifolds and Geodesics PDF Online Free

Author :
Publisher : North Holland
ISBN 13 :
Total Pages : 316 pages
Book Rating : 4.:/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Minimal Submanifolds and Geodesics by : Morio Obata

Download or read book Minimal Submanifolds and Geodesics written by Morio Obata and published by North Holland. This book was released on 1979 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Minimal Submanifolds And Related Topics (Second Edition)

Download Minimal Submanifolds And Related Topics (Second Edition) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813236078
Total Pages : 397 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Minimal Submanifolds And Related Topics (Second Edition) by : Yuanlong Xin

Download or read book Minimal Submanifolds And Related Topics (Second Edition) written by Yuanlong Xin and published by World Scientific. This book was released on 2018-08-03 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the theory of minimal submanifolds, Bernstein's problem and Plateau's problem are central topics. This important book presents the Douglas-Rado solution to Plateau's problem, but the main emphasis is on Bernstein's problem and its new developments in various directions: the value distribution of the Gauss image of a minimal surface in Euclidean 3-space, Simons' work for minimal graphic hypersurfaces, and the author's own contributions to Bernstein type theorems for higher codimension. The author also introduces some related topics, such as submanifolds with parallel mean curvature, Weierstrass type representation for surfaces of mean curvature 1 in hyperbolic 3-space, and special Lagrangian submanifolds.This new edition contains the author's recent work on the Lawson-Osserman's problem for higher codimension, and on Chern's problem for minimal hypersurfaces in the sphere. Both Chern's problem and Lawson-Osserman's problem are important problems in minimal surface theory which are still unsolved. In addition, some new techniques were developed to address those problems in detail, which are of interest in the field of geometric analysis.

Minimal Submanifolds And Related Topics

Download Minimal Submanifolds And Related Topics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814483656
Total Pages : 271 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Minimal Submanifolds And Related Topics by : Yuanlong Xin

Download or read book Minimal Submanifolds And Related Topics written by Yuanlong Xin and published by World Scientific. This book was released on 2003-12-15 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Bernstein problem and the Plateau problem are central topics in the theory of minimal submanifolds. This important book presents the Douglas-Rado solution to the Plateau problem, but the main emphasis is on the Bernstein problem and its new developments in various directions: the value distribution of the Gauss image of a minimal surface in Euclidean 3-space, Simons' work for minimal graphic hypersurfaces, and author's own contributions to Bernstein type theorems for higher codimension. The author also introduces some related topics, such as submanifolds with parallel mean curvature, Weierstrass type representation for surfaces of mean curvature 1 in hyperbolic 3-space, and special Lagrangian submanifolds.

Geometry of Submanifolds

Download Geometry of Submanifolds PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 0486832783
Total Pages : 193 pages
Book Rating : 4.4/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Submanifolds by : Bang-Yen Chen

Download or read book Geometry of Submanifolds written by Bang-Yen Chen and published by Courier Dover Publications. This book was released on 2019-06-12 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first two chapters of this frequently cited reference provide background material in Riemannian geometry and the theory of submanifolds. Subsequent chapters explore minimal submanifolds, submanifolds with parallel mean curvature vector, conformally flat manifolds, and umbilical manifolds. The final chapter discusses geometric inequalities of submanifolds, results in Morse theory and their applications, and total mean curvature of a submanifold. Suitable for graduate students and mathematicians in the area of classical and modern differential geometries, the treatment is largely self-contained. Problems sets conclude each chapter, and an extensive bibliography provides background for students wishing to conduct further research in this area. This new edition includes the author's corrections.

Minimal Submanifolds in Pseudo-Riemannian Geometry

Download Minimal Submanifolds in Pseudo-Riemannian Geometry PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814291242
Total Pages : 184 pages
Book Rating : 4.8/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Minimal Submanifolds in Pseudo-Riemannian Geometry by : Henri Anciaux

Download or read book Minimal Submanifolds in Pseudo-Riemannian Geometry written by Henri Anciaux and published by World Scientific. This book was released on 2011 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemannian case. For the first time, this textbook provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian geometry, only assuming from the reader some basic knowledge about manifold theory. Several classical results, such as the Weierstrass representation formula for minimal surfaces, and the minimizing properties of complex submanifolds, are presented in full generality without sacrificing the clarity of exposition. Finally, a number of very recent results on the subject, including the classification of equivariant minimal hypersurfaces in pseudo-Riemannian space forms and the characterization of minimal Lagrangian surfaces in some pseudo-Khler manifolds are given.

Foliations on Riemannian Manifolds and Submanifolds

Download Foliations on Riemannian Manifolds and Submanifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461242703
Total Pages : 296 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Foliations on Riemannian Manifolds and Submanifolds by : Vladimir Rovenski

Download or read book Foliations on Riemannian Manifolds and Submanifolds written by Vladimir Rovenski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is based on the author's results on the Riemannian ge ometry of foliations with nonnegative mixed curvature and on the geometry of sub manifolds with generators (rulings) in a Riemannian space of nonnegative curvature. The main idea is that such foliated (sub) manifolds can be decom posed when the dimension of the leaves (generators) is large. The methods of investigation are mostly synthetic. The work is divided into two parts, consisting of seven chapters and three appendices. Appendix A was written jointly with V. Toponogov. Part 1 is devoted to the Riemannian geometry of foliations. In the first few sections of Chapter I we give a survey of the basic results on foliated smooth manifolds (Sections 1.1-1.3), and finish in Section 1.4 with a discussion of the key problem of this work: the role of Riemannian curvature in the study of foliations on manifolds and submanifolds.

Regularity of Minimal Surfaces

Download Regularity of Minimal Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642117007
Total Pages : 634 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Regularity of Minimal Surfaces by : Ulrich Dierkes

Download or read book Regularity of Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateau ́s problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateau ́s problem have no interior branch points.

Riemannian Holonomy Groups and Calibrated Geometry

Download Riemannian Holonomy Groups and Calibrated Geometry PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191526975
Total Pages : 320 pages
Book Rating : 4.1/5 (915 download)

DOWNLOAD NOW!


Book Synopsis Riemannian Holonomy Groups and Calibrated Geometry by : Dominic D. Joyce

Download or read book Riemannian Holonomy Groups and Calibrated Geometry written by Dominic D. Joyce and published by OUP Oxford. This book was released on 2007-02-22 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate level text covers an exciting and active area of research at the crossroads of several different fields in Mathematics and Physics. In Mathematics it involves Differential Geometry, Complex Algebraic Geometry, Symplectic Geometry, and in Physics String Theory and Mirror Symmetry. Drawing extensively on the author's previous work, the text explains the advanced mathematics involved simply and clearly to both mathematicians and physicists. Starting with the basic geometry of connections, curvature, complex and Kähler structures suitable for beginning graduate students, the text covers seminal results such as Yau's proof of the Calabi Conjecture, and takes the reader all the way to the frontiers of current research in calibrated geometry, giving many open problems.

A Course in Minimal Surfaces

Download A Course in Minimal Surfaces PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470476401
Total Pages : 330 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis A Course in Minimal Surfaces by : Tobias Holck Colding

Download or read book A Course in Minimal Surfaces written by Tobias Holck Colding and published by American Mathematical Society. This book was released on 2024-01-18 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.

Global Analysis of Minimal Surfaces

Download Global Analysis of Minimal Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642117066
Total Pages : 547 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Global Analysis of Minimal Surfaces by : Ulrich Dierkes

Download or read book Global Analysis of Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichmüller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateau ́s problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.

Submanifolds and Holonomy

Download Submanifolds and Holonomy PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482245167
Total Pages : 494 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Submanifolds and Holonomy by : Jurgen Berndt

Download or read book Submanifolds and Holonomy written by Jurgen Berndt and published by CRC Press. This book was released on 2016-02-22 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor.New to the Second EditionNew chapter on normal holonom

Lie Groups and Symmetric Spaces

Download Lie Groups and Symmetric Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821834725
Total Pages : 372 pages
Book Rating : 4.8/5 (347 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups and Symmetric Spaces by : Semen Grigorʹevich Gindikin

Download or read book Lie Groups and Symmetric Spaces written by Semen Grigorʹevich Gindikin and published by American Mathematical Soc.. This book was released on 2003 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains survey and research articles devoted mainly to geometry and harmonic analysis of symmetric spaces and to corresponding aspects of group representation theory. The volume is dedicated to the memory of Russian mathematician, F. I. Karpelevich (1927-2000). Of particular interest are the survey articles by Sawyer on the Abel transform on noncompact Riemannian symmetric spaces, and by Anker and Ostellari on estimates for heat kernels on such spaces, as well as thearticle by Bernstein and Gindikin on integral geometry for families of curves. There are also many research papers on topics of current interest. The book is suitable for graduate students and research mathematicians interested in harmonic analysis and representation theory.

Geometry of Foliations

Download Geometry of Foliations PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034889143
Total Pages : 308 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Foliations by : Philippe Tondeur

Download or read book Geometry of Foliations written by Philippe Tondeur and published by Birkhäuser. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics in this survey volume concern research done on the differential geom etry of foliations over the last few years. After a discussion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de voted to Hodge theory for the transversal Laplacian and applications of the heat equation method to Riemannian foliations. Chapter 9 on Lie foliations is a prepa ration for the statement of Molino's Structure Theorem for Riemannian foliations in Chapter 10. Some aspects of the spectral theory for Riemannian foliations are discussed in Chapter 11. Connes' point of view of foliations as examples of non commutative spaces is briefly described in Chapter 12. Chapter 13 applies ideas of Riemannian foliation theory to an infinite-dimensional context. Aside from the list of references on Riemannian foliations (items on this list are referred to in the text by [ ]), we have included several appendices as follows. Appendix A is a list of books and surveys on particular aspects of foliations. Appendix B is a list of proceedings of conferences and symposia devoted partially or entirely to foliations. Appendix C is a bibliography on foliations, which attempts to be a reasonably complete list of papers and preprints on the subject of foliations up to 1995, and contains approximately 2500 titles.

Lectures and Surveys on G2-Manifolds and Related Topics

Download Lectures and Surveys on G2-Manifolds and Related Topics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 1071605771
Total Pages : 392 pages
Book Rating : 4.0/5 (716 download)

DOWNLOAD NOW!


Book Synopsis Lectures and Surveys on G2-Manifolds and Related Topics by : Spiro Karigiannis

Download or read book Lectures and Surveys on G2-Manifolds and Related Topics written by Spiro Karigiannis and published by Springer Nature. This book was released on 2020-05-26 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, one of the first on G2 manifolds in decades, collects introductory lectures and survey articles largely based on talks given at a workshop held at the Fields Institute in August 2017, as part of the major thematic program on geometric analysis. It provides an accessible introduction to various aspects of the geometry of G2 manifolds, including the construction of examples, as well as the intimate relations with calibrated geometry, Yang-Mills gauge theory, and geometric flows. It also features the inclusion of a survey on the new topological and analytic invariants of G2 manifolds that have been recently discovered. The first half of the book, consisting of several introductory lectures, is aimed at experienced graduate students or early career researchers in geometry and topology who wish to familiarize themselves with this burgeoning field. The second half, consisting of numerous survey articles, is intended to be useful to both beginners and experts in the field.

Minimal Surfaces

Download Minimal Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642116981
Total Pages : 699 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Minimal Surfaces by : Ulrich Dierkes

Download or read book Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 699 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem and Tomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.

Seminar On Minimal Submanifolds. (AM-103), Volume 103

Download Seminar On Minimal Submanifolds. (AM-103), Volume 103 PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400881439
Total Pages : 368 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Seminar On Minimal Submanifolds. (AM-103), Volume 103 by : Enrico Bombieri

Download or read book Seminar On Minimal Submanifolds. (AM-103), Volume 103 written by Enrico Bombieri and published by Princeton University Press. This book was released on 2016-03-02 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The description for this book, Seminar On Minimal Submanifolds. (AM-103), Volume 103, will be forthcoming.

Real and Complex Submanifolds

Download Real and Complex Submanifolds PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 4431552154
Total Pages : 510 pages
Book Rating : 4.4/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Real and Complex Submanifolds by : Young Jin Suh

Download or read book Real and Complex Submanifolds written by Young Jin Suh and published by Springer. This book was released on 2014-12-05 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited in collaboration with the Grassmann Research Group, this book contains many important articles delivered at the ICM 2014 Satellite Conference and the 18th International Workshop on Real and Complex Submanifolds, which was held at the National Institute for Mathematical Sciences, Daejeon, Republic of Korea, August 10–12, 2014. The book covers various aspects of differential geometry focused on submanifolds, symmetric spaces, Riemannian and Lorentzian manifolds, and Kähler and Grassmann manifolds.