Microlocal Analysis for Differential Operators

Download Microlocal Analysis for Differential Operators PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521449861
Total Pages : 164 pages
Book Rating : 4.4/5 (498 download)

DOWNLOAD NOW!


Book Synopsis Microlocal Analysis for Differential Operators by : Alain Grigis

Download or read book Microlocal Analysis for Differential Operators written by Alain Grigis and published by Cambridge University Press. This book was released on 1994-03-03 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book corresponds to a graduate course given many times by the authors, and should prove to be useful to mathematicians and theoretical physicists.

Microlocal Analysis and Applications

Download Microlocal Analysis and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540466037
Total Pages : 357 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Microlocal Analysis and Applications by : Lamberto Cattabriga

Download or read book Microlocal Analysis and Applications written by Lamberto Cattabriga and published by Springer. This book was released on 2006-11-14 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: CONTENTS: J.M. Bony: Analyse microlocale des equations aux derivees partielles non lineaires.- G.G. Grubb: Parabolic pseudo-differential boundary problems and applications.- L. H|rmander: Quadratic hyperbolic operators.- H. Komatsu: Microlocal analysis in Gevrey classes and in complex domains.- J. Sj|strand: Microlocal analysis for the periodic magnetic Schr|dinger equation and related questions.

An Introduction to Semiclassical and Microlocal Analysis

Download An Introduction to Semiclassical and Microlocal Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475744951
Total Pages : 193 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Semiclassical and Microlocal Analysis by : André Bach

Download or read book An Introduction to Semiclassical and Microlocal Analysis written by André Bach and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics in a pedagogical, way and is mainly addressed to non-specialists in the subject. It is based on lectures taught by the author over several years, and includes many exercises providing outlines of useful applications of the semi-classical theory.

Semiclassical Analysis

Download Semiclassical Analysis PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821883208
Total Pages : 448 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Semiclassical Analysis by : Maciej Zworski

Download or read book Semiclassical Analysis written by Maciej Zworski and published by American Mathematical Soc.. This book was released on 2012 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: "...A graduate level text introducing readers to semiclassical and microlocal methods in PDE." -- from xi.

Microlocal Analysis, Sharp Spectral Asymptotics and Applications I

Download Microlocal Analysis, Sharp Spectral Asymptotics and Applications I PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030305570
Total Pages : 938 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Microlocal Analysis, Sharp Spectral Asymptotics and Applications I by : Victor Ivrii

Download or read book Microlocal Analysis, Sharp Spectral Asymptotics and Applications I written by Victor Ivrii and published by Springer Nature. This book was released on 2019-09-12 with total page 938 pages. Available in PDF, EPUB and Kindle. Book excerpt: The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the general microlocal semiclassical approach is developed, and microlocal and local semiclassical spectral asymptotics are derived.

The Radon Transform

Download The Radon Transform PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780817641092
Total Pages : 214 pages
Book Rating : 4.6/5 (41 download)

DOWNLOAD NOW!


Book Synopsis The Radon Transform by : Sigurdur Helgason

Download or read book The Radon Transform written by Sigurdur Helgason and published by Springer Science & Business Media. This book was released on 1999-08-01 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.

D-modules and Microlocal Calculus

Download D-modules and Microlocal Calculus PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821827666
Total Pages : 276 pages
Book Rating : 4.8/5 (276 download)

DOWNLOAD NOW!


Book Synopsis D-modules and Microlocal Calculus by : Masaki Kashiwara

Download or read book D-modules and Microlocal Calculus written by Masaki Kashiwara and published by American Mathematical Soc.. This book was released on 2003 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Masaki Kashiwara is undoubtedly one of the masters of the theory of $D$-modules, and he has created a good, accessible entry point to the subject. The theory of $D$-modules is a very powerful point of view, bringing ideas from algebra and algebraic geometry to the analysis of systems of differential equations. It is often used in conjunction with microlocal analysis, as some of the important theorems are best stated or proved using these techniques. The theory has been used very successfully in applications to representation theory. Here, there is an emphasis on $b$-functions. These show up in various contexts: number theory, analysis, representation theory, and the geometry and invariants of prehomogeneous vector spaces. Some of the most important results on $b$-functions were obtained by Kashiwara. A hot topic from the mid '70s to mid '80s, it has now moved a bit more into the mainstream. Graduate students and research mathematicians will find that working on the subject in the two-decade interval has given Kashiwara a very good perspective for presenting the topic to the general mathematical public.

Singularities of integrals

Download Singularities of integrals PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0857296035
Total Pages : 218 pages
Book Rating : 4.8/5 (572 download)

DOWNLOAD NOW!


Book Synopsis Singularities of integrals by : Frédéric Pham

Download or read book Singularities of integrals written by Frédéric Pham and published by Springer Science & Business Media. This book was released on 2011-04-22 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together two fundamental texts from Frédéric Pham’s research on singular integrals, the first part of this book focuses on topological and geometrical aspects while the second explains the analytic approach. Using notions developed by J. Leray in the calculus of residues in several variables and R. Thom’s isotopy theorems, Frédéric Pham’s foundational study of the singularities of integrals lies at the interface between analysis and algebraic geometry, culminating in the Picard-Lefschetz formulae. These mathematical structures, enriched by the work of Nilsson, are then approached using methods from the theory of differential equations and generalized from the point of view of hyperfunction theory and microlocal analysis. Providing a ‘must-have’ introduction to the singularities of integrals, a number of supplementary references also offer a convenient guide to the subjects covered. This book will appeal to both mathematicians and physicists with an interest in the area of singularities of integrals. Frédéric Pham, now retired, was Professor at the University of Nice. He has published several educational and research texts. His recent work concerns semi-classical analysis and resurgent functions.

Cohomological Analysis of Partial Differential Equations and Secondary Calculus

Download Cohomological Analysis of Partial Differential Equations and Secondary Calculus PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821897997
Total Pages : 268 pages
Book Rating : 4.8/5 (979 download)

DOWNLOAD NOW!


Book Synopsis Cohomological Analysis of Partial Differential Equations and Secondary Calculus by : A. M. Vinogradov

Download or read book Cohomological Analysis of Partial Differential Equations and Secondary Calculus written by A. M. Vinogradov and published by American Mathematical Soc.. This book was released on 2001-10-16 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to fundamentals of a new theory, which is an analog of affine algebraic geometry for (nonlinear) partial differential equations. This theory grew up from the classical geometry of PDE's originated by S. Lie and his followers by incorporating some nonclassical ideas from the theory of integrable systems, the formal theory of PDE's in its modern cohomological form given by D. Spencer and H. Goldschmidt and differential calculus over commutative algebras (Primary Calculus). The main result of this synthesis is Secondary Calculus on diffieties, new geometrical objects which are analogs of algebraic varieties in the context of (nonlinear) PDE's. Secondary Calculus surprisingly reveals a deep cohomological nature of the general theory of PDE's and indicates new directions of its further progress. Recent developments in quantum field theory showed Secondary Calculus to be its natural language, promising a nonperturbative formulation of the theory. In addition to PDE's themselves, the author describes existing and potential applications of Secondary Calculus ranging from algebraic geometry to field theory, classical and quantum, including areas such as characteristic classes, differential invariants, theory of geometric structures, variational calculus, control theory, etc. This book, focused mainly on theoretical aspects, forms a natural dipole with Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Volume 182 in this same series, Translations of Mathematical Monographs, and shows the theory "in action".

Noncommutative Microlocal Analysis

Download Noncommutative Microlocal Analysis PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821823140
Total Pages : 188 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Noncommutative Microlocal Analysis by : Michael Eugene Taylor

Download or read book Noncommutative Microlocal Analysis written by Michael Eugene Taylor and published by American Mathematical Soc.. This book was released on 1984 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometric Scattering Theory

Download Geometric Scattering Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521498104
Total Pages : 134 pages
Book Rating : 4.4/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Geometric Scattering Theory by : Richard B. Melrose

Download or read book Geometric Scattering Theory written by Richard B. Melrose and published by Cambridge University Press. This book was released on 1995-07-28 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes are intended as a non-technical overview of scattering theory.

Inside Out

Download Inside Out PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521824699
Total Pages : 424 pages
Book Rating : 4.8/5 (246 download)

DOWNLOAD NOW!


Book Synopsis Inside Out by : Gunther Uhlmann

Download or read book Inside Out written by Gunther Uhlmann and published by Cambridge University Press. This book was released on 2003-11-10 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, leading experts in the theoretical and applied aspects of inverse problems offer extended surveys on several important topics.

Handbook of Mathematical Methods in Imaging

Download Handbook of Mathematical Methods in Imaging PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387929193
Total Pages : 1626 pages
Book Rating : 4.3/5 (879 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mathematical Methods in Imaging by : Otmar Scherzer

Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Tools and Problems in Partial Differential Equations

Download Tools and Problems in Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030502848
Total Pages : 357 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Tools and Problems in Partial Differential Equations by : Thomas Alazard

Download or read book Tools and Problems in Partial Differential Equations written by Thomas Alazard and published by Springer Nature. This book was released on 2020-10-19 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a unique learning-by-doing introduction to the modern theory of partial differential equations. Through 65 fully solved problems, the book offers readers a fast but in-depth introduction to the field, covering advanced topics in microlocal analysis, including pseudo- and para-differential calculus, and the key classical equations, such as the Laplace, Schrödinger or Navier-Stokes equations. Essentially self-contained, the book begins with problems on the necessary tools from functional analysis, distributions, and the theory of functional spaces, and in each chapter the problems are preceded by a summary of the relevant results of the theory. Informed by the authors' extensive research experience and years of teaching, this book is for graduate students and researchers who wish to gain real working knowledge of the subject.

Pseudodifferential Operators and Nonlinear PDE

Download Pseudodifferential Operators and Nonlinear PDE PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780817635954
Total Pages : 234 pages
Book Rating : 4.6/5 (359 download)

DOWNLOAD NOW!


Book Synopsis Pseudodifferential Operators and Nonlinear PDE by : Michael Taylor

Download or read book Pseudodifferential Operators and Nonlinear PDE written by Michael Taylor and published by Springer Science & Business Media. This book was released on 1991-11-01 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the past 25 years the theory of pseudodifferential operators has played an important role in many exciting and deep investigations into linear PDE. Over the past decade, this tool has also begun to yield interesting results in nonlinear PDE. This book is devoted to a summary and reconsideration of some used of pseudodifferential operator techniques in nonlinear PDE. The book should be of interest to graduate students, instructors, and researchers interested in partial differential equations, nonlinear analysis in classical mathematical physics and differential geometry, and in harmonic analysis.

Pseudo-differential Operators and the Nash-Moser Theorem

Download Pseudo-differential Operators and the Nash-Moser Theorem PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821834541
Total Pages : 178 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Pseudo-differential Operators and the Nash-Moser Theorem by : Serge Alinhac

Download or read book Pseudo-differential Operators and the Nash-Moser Theorem written by Serge Alinhac and published by American Mathematical Soc.. This book was released on 2007 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents two essential and apparently unrelated subjects. The first, microlocal analysis and the theory of pseudo-differential operators, is a basic tool in the study of partial differential equations and in analysis on manifolds. The second, the Nash-Moser theorem, continues to be fundamentally important in geometry, dynamical systems and nonlinear PDE. Each of the subjects, which are of interest in their own right as well as for applications, can be learned separately. But the book shows the deep connections between the two themes, particularly in the middle part, which is devoted to Littlewood-Paley theory, dyadic analysis, and the paradifferential calculus and its application to interpolation inequalities. An important feature is the elementary and self-contained character of the text, to which many exercises and an introductory Chapter $0$ with basic material have been added. This makes the book readable by graduate students or researchers from one subject who are interested in becoming familiar with the other. It can also be used as a textbook for a graduate course on nonlinear PDE or geometry.

Fourier Analysis and Nonlinear Partial Differential Equations

Download Fourier Analysis and Nonlinear Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642168302
Total Pages : 530 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Fourier Analysis and Nonlinear Partial Differential Equations by : Hajer Bahouri

Download or read book Fourier Analysis and Nonlinear Partial Differential Equations written by Hajer Bahouri and published by Springer Science & Business Media. This book was released on 2011-01-03 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.