Multiple Imputation of Missing Data Using SAS

Download Multiple Imputation of Missing Data Using SAS PDF Online Free

Author :
Publisher : SAS Institute
ISBN 13 : 162959203X
Total Pages : 328 pages
Book Rating : 4.6/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Multiple Imputation of Missing Data Using SAS by : Patricia Berglund

Download or read book Multiple Imputation of Missing Data Using SAS written by Patricia Berglund and published by SAS Institute. This book was released on 2014-07-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Find guidance on using SAS for multiple imputation and solving common missing data issues. Multiple Imputation of Missing Data Using SAS provides both theoretical background and constructive solutions for those working with incomplete data sets in an engaging example-driven format. It offers practical instruction on the use of SAS for multiple imputation and provides numerous examples that use a variety of public release data sets with applications to survey data. Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. The authors cover the MI and MIANALYZE procedures in detail, along with other procedures used for analysis of complete data sets. They guide analysts through the multiple imputation process, including evaluation of missing data patterns, choice of an imputation method, execution of the process, and interpretation of results. Topics discussed include how to deal with missing data problems in a statistically appropriate manner, how to intelligently select an imputation method, how to incorporate the uncertainty introduced by the imputation process, and how to incorporate the complex sample design (if appropriate) through use of the SAS SURVEY procedures. Discover the theoretical background and see extensive applications of the multiple imputation process in action. This book is part of the SAS Press program.

Applied Missing Data Analysis

Download Applied Missing Data Analysis PDF Online Free

Author :
Publisher : Guilford Press
ISBN 13 : 1606236393
Total Pages : 401 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Applied Missing Data Analysis by : Craig K. Enders

Download or read book Applied Missing Data Analysis written by Craig K. Enders and published by Guilford Press. This book was released on 2010-04-23 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Walking readers step by step through complex concepts, this book translates missing data techniques into something that applied researchers and graduate students can understand and utilize in their own research. Enders explains the rationale and procedural details for maximum likelihood estimation, Bayesian estimation, multiple imputation, and models for handling missing not at random (MNAR) data. Easy-to-follow examples and small simulated data sets illustrate the techniques and clarify the underlying principles. The companion website includes data files and syntax for the examples in the book as well as up-to-date information on software. The book is accessible to substantive researchers while providing a level of detail that will satisfy quantitative specialists. This book will appeal to researchers and graduate students in psychology, education, management, family studies, public health, sociology, and political science. It will also serve as a supplemental text for doctoral-level courses or seminars in advanced quantitative methods, survey analysis, longitudinal data analysis, and multilevel modeling, and as a primary text for doctoral-level courses or seminars in missing data.

Flexible Imputation of Missing Data, Second Edition

Download Flexible Imputation of Missing Data, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429960352
Total Pages : 444 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Flexible Imputation of Missing Data, Second Edition by : Stef van Buuren

Download or read book Flexible Imputation of Missing Data, Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

The Prevention and Treatment of Missing Data in Clinical Trials

Download The Prevention and Treatment of Missing Data in Clinical Trials PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 030918651X
Total Pages : 163 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Prevention and Treatment of Missing Data in Clinical Trials by : National Research Council

Download or read book The Prevention and Treatment of Missing Data in Clinical Trials written by National Research Council and published by National Academies Press. This book was released on 2010-12-21 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Analysis of Incomplete Multivariate Data

Download Analysis of Incomplete Multivariate Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781439821862
Total Pages : 470 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Analysis of Incomplete Multivariate Data by : J.L. Schafer

Download or read book Analysis of Incomplete Multivariate Data written by J.L. Schafer and published by CRC Press. This book was released on 1997-08-01 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis. Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms. All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.

Multiple Imputation for Nonresponse in Surveys

Download Multiple Imputation for Nonresponse in Surveys PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470317361
Total Pages : 258 pages
Book Rating : 4.4/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Multiple Imputation for Nonresponse in Surveys by : Donald B. Rubin

Download or read book Multiple Imputation for Nonresponse in Surveys written by Donald B. Rubin and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Demonstrates how nonresponse in sample surveys and censuses can be handled by replacing each missing value with two or more multiple imputations. Clearly illustrates the advantages of modern computing to such handle surveys, and demonstrates the benefit of this statistical technique for researchers who must analyze them. Also presents the background for Bayesian and frequentist theory. After establishing that only standard complete-data methods are needed to analyze a multiply-imputed set, the text evaluates procedures in general circumstances, outlining specific procedures for creating imputations in both the ignorable and nonignorable cases. Examples and exercises reinforce ideas, and the interplay of Bayesian and frequentist ideas presents a unified picture of modern statistics.

Handbook of Latent Variable and Related Models

Download Handbook of Latent Variable and Related Models PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080471269
Total Pages : 458 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Latent Variable and Related Models by :

Download or read book Handbook of Latent Variable and Related Models written by and published by Elsevier. This book was released on 2011-08-11 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.

Multiple Imputation of Missing Data in Practice

Download Multiple Imputation of Missing Data in Practice PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429530978
Total Pages : 419 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Multiple Imputation of Missing Data in Practice by : Yulei He

Download or read book Multiple Imputation of Missing Data in Practice written by Yulei He and published by CRC Press. This book was released on 2021-11-20 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis. Over the past 40 years or so, multiple imputation has gone through rapid development in both theories and applications. It is nowadays the most versatile, popular, and effective missing-data strategy that is used by researchers and practitioners across different fields. There is a strong need to better understand and learn about multiple imputation in the research and practical community. Accessible to a broad audience, this book explains statistical concepts of missing data problems and the associated terminology. It focuses on how to address missing data problems using multiple imputation. It describes the basic theory behind multiple imputation and many commonly-used models and methods. These ideas are illustrated by examples from a wide variety of missing data problems. Real data from studies with different designs and features (e.g., cross-sectional data, longitudinal data, complex surveys, survival data, studies subject to measurement error, etc.) are used to demonstrate the methods. In order for readers not only to know how to use the methods, but understand why multiple imputation works and how to choose appropriate methods, simulation studies are used to assess the performance of the multiple imputation methods. Example datasets and sample programming code are either included in the book or available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book). Key Features Provides an overview of statistical concepts that are useful for better understanding missing data problems and multiple imputation analysis Provides a detailed discussion on multiple imputation models and methods targeted to different types of missing data problems (e.g., univariate and multivariate missing data problems, missing data in survival analysis, longitudinal data, complex surveys, etc.) Explores measurement error problems with multiple imputation Discusses analysis strategies for multiple imputation diagnostics Discusses data production issues when the goal of multiple imputation is to release datasets for public use, as done by organizations that process and manage large-scale surveys with nonresponse problems For some examples, illustrative datasets and sample programming code from popular statistical packages (e.g., SAS, R, WinBUGS) are included in the book. For others, they are available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book)

Statistical Analysis with Missing Data

Download Statistical Analysis with Missing Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118595696
Total Pages : 444 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis with Missing Data by : Roderick J. A. Little

Download or read book Statistical Analysis with Missing Data written by Roderick J. A. Little and published by John Wiley & Sons. This book was released on 2019-03-21 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive treatment of a classic text on missing data in statistics The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems. Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics. An updated “classic” written by renowned authorities on the subject Features over 150 exercises (including many new ones) Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods Revises previous topics based on past student feedback and class experience Contains an updated and expanded bibliography The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work "has been no less than defining and transforming." (ISI) Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.

Multiple Imputation and its Application

Download Multiple Imputation and its Application PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119942276
Total Pages : 368 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Multiple Imputation and its Application by : James Carpenter

Download or read book Multiple Imputation and its Application written by James Carpenter and published by John Wiley & Sons. This book was released on 2012-12-21 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to analysing partially observeddata. Collecting, analysing and drawing inferences from data iscentral to research in the medical and social sciences.Unfortunately, it is rarely possible to collect all the intendeddata. The literature on inference from the resultingincomplete data is now huge, and continues to grow both asmethods are developed for large and complex data structures, and asincreasing computer power and suitable software enable researchersto apply these methods. This book focuses on a particular statistical method foranalysing and drawing inferences from incomplete data, calledMultiple Imputation (MI). MI is attractive because it is bothpractical and widely applicable. The authors aim is to clarify theissues raised by missing data, describing the rationale for MI, therelationship between the various imputation models and associatedalgorithms and its application to increasingly complex datastructures. Multiple Imputation and its Application: Discusses the issues raised by the analysis of partiallyobserved data, and the assumptions on which analyses rest. Presents a practical guide to the issues to consider whenanalysing incomplete data from both observational studies andrandomized trials. Provides a detailed discussion of the practical use of MI withreal-world examples drawn from medical and social statistics. Explores handling non-linear relationships and interactionswith multiple imputation, survival analysis, multilevel multipleimputation, sensitivity analysis via multiple imputation, usingnon-response weights with multiple imputation and doubly robustmultiple imputation. Multiple Imputation and its Application is aimed atquantitative researchers and students in the medical and socialsciences with the aim of clarifying the issues raised by theanalysis of incomplete data data, outlining the rationale for MIand describing how to consider and address the issues that arise inits application.

Missing Data in Longitudinal Studies

Download Missing Data in Longitudinal Studies PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420011189
Total Pages : 324 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Missing Data in Longitudinal Studies by : Michael J. Daniels

Download or read book Missing Data in Longitudinal Studies written by Michael J. Daniels and published by CRC Press. This book was released on 2008-03-11 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drawing from the authors' own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ

Structural Equation Modeling

Download Structural Equation Modeling PDF Online Free

Author :
Publisher : IAP
ISBN 13 : 1623962463
Total Pages : 702 pages
Book Rating : 4.6/5 (239 download)

DOWNLOAD NOW!


Book Synopsis Structural Equation Modeling by : Gregory R. Hancock

Download or read book Structural Equation Modeling written by Gregory R. Hancock and published by IAP. This book was released on 2013-03-01 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sponsored by the American Educational Research Association's Special Interest Group for Educational Statisticians This volume is the second edition of Hancock and Mueller’s highly-successful 2006 volume, with all of the original chapters updated as well as four new chapters. The second edition, like the first, is intended to serve as a didactically-oriented resource for graduate students and research professionals, covering a broad range of advanced topics often not discussed in introductory courses on structural equation modeling (SEM). Such topics are important in furthering the understanding of foundations and assumptions underlying SEM as well as in exploring SEM, as a potential tool to address new types of research questions that might not have arisen during a first course. Chapters focus on the clear explanation and application of topics, rather than on analytical derivations, and contain materials from popular SEM software.

Handbook of Missing Data Methodology

Download Handbook of Missing Data Methodology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439854610
Total Pages : 600 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Missing Data Methodology by : Geert Molenberghs

Download or read book Handbook of Missing Data Methodology written by Geert Molenberghs and published by CRC Press. This book was released on 2014-11-06 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.

Survey Sampling Theory and Applications

Download Survey Sampling Theory and Applications PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128118970
Total Pages : 932 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Survey Sampling Theory and Applications by : Raghunath Arnab

Download or read book Survey Sampling Theory and Applications written by Raghunath Arnab and published by Academic Press. This book was released on 2017-03-08 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survey Sampling Theory and Applications offers a comprehensive overview of survey sampling, including the basics of sampling theory and practice, as well as research-based topics and examples of emerging trends. The text is useful for basic and advanced survey sampling courses. Many other books available for graduate students do not contain material on recent developments in the area of survey sampling. The book covers a wide spectrum of topics on the subject, including repetitive sampling over two occasions with varying probabilities, ranked set sampling, Fays method for balanced repeated replications, mirror-match bootstrap, and controlled sampling procedures. Many topics discussed here are not available in other text books. In each section, theories are illustrated with numerical examples. At the end of each chapter theoretical as well as numerical exercises are given which can help graduate students. - Covers a wide spectrum of topics on survey sampling and statistics - Serves as an ideal text for graduate students and researchers in survey sampling theory and applications - Contains material on recent developments in survey sampling not covered in other books - Illustrates theories using numerical examples and exercises

Methods and Applications of Longitudinal Data Analysis

Download Methods and Applications of Longitudinal Data Analysis PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128014822
Total Pages : 531 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Methods and Applications of Longitudinal Data Analysis by : Xian Liu

Download or read book Methods and Applications of Longitudinal Data Analysis written by Xian Liu and published by Elsevier. This book was released on 2015-09-01 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.

Handbook of Statistical Modeling for the Social and Behavioral Sciences

Download Handbook of Statistical Modeling for the Social and Behavioral Sciences PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1489912924
Total Pages : 603 pages
Book Rating : 4.4/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Statistical Modeling for the Social and Behavioral Sciences by : G. Arminger

Download or read book Handbook of Statistical Modeling for the Social and Behavioral Sciences written by G. Arminger and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contributors thoroughly survey the most important statistical models used in empirical reserch in the social and behavioral sciences. Following a common format, each chapter introduces a model, illustrates the types of problems and data for which the model is best used, provides numerous examples that draw upon familiar models or procedures, and includes material on software that can be used to estimate the models studied. This handbook will aid researchers, methodologists, graduate students, and statisticians to understand and resolve common modeling problems.