Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Maximal Functions Measuring Smoothness
Download Maximal Functions Measuring Smoothness full books in PDF, epub, and Kindle. Read online Maximal Functions Measuring Smoothness ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Maximal Functions Measuring Smoothness by : Ronald A. DeVore
Download or read book Maximal Functions Measuring Smoothness written by Ronald A. DeVore and published by American Mathematical Soc.. This book was released on 1984 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maximal functions which measure the smoothness of a function are introduced and studied from the point of view of their relationship to classical smoothness and their use in proving embedding theorems, extension theorems, and various results on differentiation. New spaces of functions which generalize Sobolev spaces are introduced.
Book Synopsis Recent Advances in Harmonic Analysis and Applications by : Dmitriy Bilyk
Download or read book Recent Advances in Harmonic Analysis and Applications written by Dmitriy Bilyk and published by Springer Science & Business Media. This book was released on 2012-10-16 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent Advances in Harmonic Analysis and Applications features selected contributions from the AMS conference which took place at Georgia Southern University, Statesboro in 2011 in honor of Professor Konstantin Oskolkov's 65th birthday. The contributions are based on two special sessions, namely "Harmonic Analysis and Applications" and "Sparse Data Representations and Applications." Topics covered range from Banach space geometry to classical harmonic analysis and partial differential equations. Survey and expository articles by leading experts in their corresponding fields are included, and the volume also features selected high quality papers exploring new results and trends in Muckenhoupt-Sawyer theory, orthogonal polynomials, trigonometric series, approximation theory, Bellman functions and applications in differential equations. Graduate students and researchers in analysis will be particularly interested in the articles which emphasize remarkable connections between analysis and analytic number theory. The readers will learn about recent mathematical developments and directions for future work in the unexpected and surprising interaction between abstract problems in additive number theory and experimentally discovered optical phenomena in physics. This book will be useful for number theorists, harmonic analysts, algorithmists in multi-dimensional signal processing and experts in physics and partial differential equations.
Book Synopsis Sobolev Spaces in Mathematics I by : Vladimir Maz'ya
Download or read book Sobolev Spaces in Mathematics I written by Vladimir Maz'ya and published by Springer Science & Business Media. This book was released on 2008-12-02 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume mark’s the centenary of the birth of the outstanding mathematician of the 20th century, Sergey Sobolev. It includes new results on the latest topics of the theory of Sobolev spaces, partial differential equations, analysis and mathematical physics.
Book Synopsis Function Spaces and Applications by : Michael Cwikel
Download or read book Function Spaces and Applications written by Michael Cwikel and published by Springer. This book was released on 2006-11-15 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: This seminar is a loose continuation of two previous conferences held in Lund (1982, 1983), mainly devoted to interpolation spaces, which resulted in the publication of the Lecture Notes in Mathematics Vol. 1070. This explains the bias towards that subject. The idea this time was, however, to bring together mathematicians also from other related areas of analysis. To emphasize the historical roots of the subject, the collection is preceded by a lecture on the life of Marcel Riesz.
Book Synopsis Theory of Besov Spaces by : Yoshihiro Sawano
Download or read book Theory of Besov Spaces written by Yoshihiro Sawano and published by Springer. This book was released on 2018-11-04 with total page 964 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.
Book Synopsis Integral Operators in Non-Standard Function Spaces by : Vakhtang Kokilashvili
Download or read book Integral Operators in Non-Standard Function Spaces written by Vakhtang Kokilashvili and published by Birkhäuser. This book was released on 2016-05-11 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the result of the authors' long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them. The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book's most distinctive features is that the majority of the statements proved here are in the form of criteria. The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematics and prospective students.
Book Synopsis Geometric Harmonic Analysis II by : Dorina Mitrea
Download or read book Geometric Harmonic Analysis II written by Dorina Mitrea and published by Springer Nature. This book was released on 2023-03-03 with total page 938 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is part of a larger program, materializing in five volumes, whose principal aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings. Volume II is concerned with function spaces measuring size and/or smoothness, such as Hardy spaces, Besov spaces, Triebel-Lizorkin spaces, Sobolev spaces, Morrey spaces, Morrey-Campanato spaces, spaces of functions of Bounded Mean Oscillations, etc., in general geometric settings. Work here also highlights the close interplay between differentiability properties of functions and singular integral operators. The text is intended for researchers, graduate students, and industry professionals interested in harmonic analysis, functional analysis, geometric measure theory, and function space theory.
Book Synopsis Concentration, Functional Inequalities and Isoperimetry by : Christian Houdré
Download or read book Concentration, Functional Inequalities and Isoperimetry written by Christian Houdré and published by American Mathematical Soc.. This book was released on 2011 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interactions between concentration, isoperimetry and functional inequalities have led to many significant advances in functional analysis and probability theory. Important progress has also taken place in combinatorics, geometry, harmonic analysis and mathematical physics, with recent new applications in random matrices and information theory. This will appeal to graduate students and researchers interested in the interplay between analysis, probability, and geometry.
Book Synopsis Function Spaces and Applications by : David Eric Edmunds
Download or read book Function Spaces and Applications written by David Eric Edmunds and published by CRC Press. This book was released on 2000 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from the proceedings an international conference held in 1997, Function Spaces and Applications presents the work of leading mathematicians in the vital and rapidly growing field of functional analysis.
Book Synopsis Differential Equations and Function Spaces by : Sergeĭ Lʹvovich Sobolev
Download or read book Differential Equations and Function Spaces written by Sergeĭ Lʹvovich Sobolev and published by American Mathematical Soc.. This book was released on 1992 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This commemorative volume honours the memory of S. L. Sobolev by presenting eighteen papers reflecting the area of Sobolev's main contributions: applications of functional analysis to differential equations. The papers examine various problems in the theory of partial differential equations (linear and non-linear) and the theory of differentiable functions of several real variables. Applications to problems of mathematical physics and approximate methods of conformal mapping are also treated.
Book Synopsis Harmonic Analysis and Partial Differential Equations by : Jose Garcia-Cuerva
Download or read book Harmonic Analysis and Partial Differential Equations written by Jose Garcia-Cuerva and published by Springer. This book was released on 2006-11-14 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The programme of the Conference at El Escorial included 4 main courses of 3-4 hours. Their content is reflected in the four survey papers in this volume (see above). Also included are the ten 45-minute lectures of a more specialized nature.
Book Synopsis Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals by : Sergey Kislyakov
Download or read book Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals written by Sergey Kislyakov and published by Springer Science & Business Media. This book was released on 2012-10-29 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderón–Zygmund decomposition. These new Calderón–Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderón–Zygmund singular integral operators. The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderón–Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals.
Book Synopsis Weight Theory for Integral Transforms on Spaces of Homogeneous Type by : Ioseb Genebashvili
Download or read book Weight Theory for Integral Transforms on Spaces of Homogeneous Type written by Ioseb Genebashvili and published by CRC Press. This book was released on 1997-05-15 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gives an account of the current state of weight theory for integral operators, such as maximal functions, Riesz potential, singular integrals and their generalization in Lorentz and Orlicz spaces. Starting with the crucial concept of a space of homogeneous type, it continues with general criteria for the boundedness of the integral operators considered, then address special settings and applications to classical operators in Euclidean spaces.
Book Synopsis Function Spaces, Differential Operators and Nonlinear Analysis by : Dorothee Haroske
Download or read book Function Spaces, Differential Operators and Nonlinear Analysis written by Dorothee Haroske and published by Springer Science & Business Media. This book was released on 2003-02-24 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to our teacher and friend Hans Triebel. The core of the book is based on lectures given at the International Conference "Function Spaces, Differential Operators and Nonlinear Analysis" (FSDONA--01) held in Teistungen, Thuringia / Germany, from June 28 to July 4,2001, in honour of his 65th birthday. This was the fifth in a series of meetings organised under the same name by scientists from Finland (Helsinki, Oulu) , the Czech Republic (Prague, Plzen) and Germany (Jena) promoting the collaboration of specialists in East and West, working in these fields. This conference was a very special event because it celebrated Hans Triebel's extraordinary impact on mathematical analysis. The development of the mod ern theory of function spaces in the last 30 years and its application to various branches in both pure and applied mathematics is deeply influenced by his lasting contributions. In a series of books Hans Triebel has given systematic treatments of the theory of function spaces from different points of view, thus revealing its interdependence with interpolation theory, harmonic analysis, partial differential equations, nonlinear operators, entropy, spectral theory and, most recently, anal ysis on fractals. The presented collection of papers is a tribute to Hans Triebel's distinguished work. The book is subdivided into three parts: • Part I contains the two invited lectures by O.V. Besov (Moscow) and D.E. Edmunds (Sussex) having a survey character and honouring Hans Triebel's contributions.
Download or read book Morrey Spaces written by Yoshihiro Sawano and published by CRC Press. This book was released on 2020-09-17 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume I focused mainly on harmonic analysis. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
Book Synopsis Analysis at Urbana: Volume 1, Analysis in Function Spaces by : E. Berkson
Download or read book Analysis at Urbana: Volume 1, Analysis in Function Spaces written by E. Berkson and published by CUP Archive. This book was released on 1989-03-30 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Throughout the academic year 1986-7, the University of Illinois hosted a symposium on mathematical analysis attended by some of the leading figures in the field. This resulting book lays emphasis on the synthesis of modern and classical analysis.
Book Synopsis Theory of Function Spaces II by : Hans Triebel
Download or read book Theory of Function Spaces II written by Hans Triebel and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Function Spaces II deals with the theory of function spaces of type Bspq and Fspq as it stands at the present. These two scales of spaces cover many well-known function spaces such as Hölder-Zygmund spaces, (fractional) Sobolev spaces, Besov spaces, inhomogeneous Hardy spaces, spaces of BMO-type and local approximation spaces which are closely connected with Morrey-Campanato spaces. Theory of Function Spaces II is self-contained, although it may be considered an update of the author’s earlier book of the same title. The book’s 7 chapters start with a historical survey of the subject, and then analyze the theory of function spaces in Rn and in domains, applications to (exotic) pseudo-differential operators, and function spaces on Riemannian manifolds. ------ Reviews The first chapter deserves special attention. This chapter is both an outstanding historical survey of function spaces treated in the book and a remarkable survey of rather different techniques developed in the last 50 years. It is shown that all these apparently different methods are only different ways of characterizing the same classes of functions. The book can be best recommended to researchers and advanced students working on functional analysis. - Zentralblatt MATH