Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Mathematical Programming In Statistics
Download Mathematical Programming In Statistics full books in PDF, epub, and Kindle. Read online Mathematical Programming In Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Mathematical Programming in Statistics by : T. S. Arthanari
Download or read book Mathematical Programming in Statistics written by T. S. Arthanari and published by . This book was released on 1981 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression analysis; Generalized inverses in linear statistical models; Theory of testing statistical hypotheses; Sampling; Design and analysis of experiment; Cluster analysis.
Book Synopsis Mathematics and Programming for Machine Learning with R by : William Claster
Download or read book Mathematics and Programming for Machine Learning with R written by William Claster and published by CRC Press. This book was released on 2020-10-26 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the author’s experience in teaching data science for more than 10 years, Mathematics and Programming for Machine Learning with R: From the Ground Up reveals how machine learning algorithms do their magic and explains how these algorithms can be implemented in code. It is designed to provide readers with an understanding of the reasoning behind machine learning algorithms as well as how to program them. Written for novice programmers, the book progresses step-by-step, providing the coding skills needed to implement machine learning algorithms in R. The book begins with simple implementations and fundamental concepts of logic, sets, and probability before moving to the coverage of powerful deep learning algorithms. The first eight chapters deal with probability-based machine learning algorithms, and the last eight chapters deal with machine learning based on artificial neural networks. The first half of the book does not require mathematical sophistication, although familiarity with probability and statistics would be helpful. The second half assumes the reader is familiar with at least one semester of calculus. The text guides novice R programmers through algorithms and their application and along the way; the reader gains programming confidence in tackling advanced R programming challenges. Highlights of the book include: More than 400 exercises A strong emphasis on improving programming skills and guiding beginners to the implementation of full-fledged algorithms Coverage of fundamental computer and mathematical concepts including logic, sets, and probability In-depth explanations of machine learning algorithms
Book Synopsis Modelling in Mathematical Programming by : José Manuel García Sánchez
Download or read book Modelling in Mathematical Programming written by José Manuel García Sánchez and published by Springer. This book was released on 2021-11-02 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides basic tools for learning how to model in mathematical programming, from models without much complexity to complex system models. It presents a unique methodology for the building of an integral mathematical model, as well as new techniques that help build under own criteria. It allows readers to structure models from the elements and variables to the constraints, a basic modelling guide for any system with a new scheme of variables, a classification of constraints and also a set of rules to model specifications stated as logical propositions, helping to better understand models already existing in the literature. It also presents the modelling of all possible objectives that may arise in optimization problems regarding the variables values. The book is structured to guide the reader in an orderly manner, learning of the components that the methodology establishes in an optimization problem. The system includes the elements, which are all the actors that participate in the system, decision activities that occur in the system, calculations based on the decision activities, specifications such as regulations, impositions or actions of defined value and objective criterion, which guides the resolution of the system.
Book Synopsis Math for Programmers by : Paul Orland
Download or read book Math for Programmers written by Paul Orland and published by Manning Publications. This book was released on 2021-01-12 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks
Book Synopsis Mathematical Programming by : Michel Minoux
Download or read book Mathematical Programming written by Michel Minoux and published by John Wiley & Sons. This book was released on 1986 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive work covers the whole field of mathematical programming, including linear programming, unconstrained and constrained nonlinear programming, nondifferentiable (or nonsmooth) optimization, integer programming, large scale systems optimization, dynamic programming, and optimization in infinite dimensions. Special emphasis is placed on unifying concepts such as point-to-set maps, saddle points and perturbations functions, duality theory and its extensions.
Book Synopsis Programming Mathematics Using MATLAB by : Lisa A. Oberbroeckling
Download or read book Programming Mathematics Using MATLAB written by Lisa A. Oberbroeckling and published by Academic Press. This book was released on 2020-05-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing an alternative to engineering-focused resources in the area, Programming Mathematics Using MATLAB® introduces the basics of programming and of using MATLAB® by highlighting many mathematical examples. Emphasizing mathematical concepts through the visualization of programming throughout the book, this useful resource utilizes examples that may be familiar to math students (such as numerical integration) and others that may be new (such as fractals). Additionally, the text uniquely offers a variety of MATLAB® projects, all of which have been class-tested thoroughly, and which enable students to put MATLAB® programming into practice while expanding their comprehension of concepts such as Taylor polynomials and the Gram-Schmidt process. Programming Mathematics Using MATLAB® is appropriate for readers familiar with sophomore-level mathematics (vectors, matrices, multivariable calculus), and is useful for math courses focused on MATLAB® specifically and those focused on mathematical concepts which seek to utilize MATLAB® in the classroom.
Book Synopsis Methods and Models in Mathematical Programming by : S. A. MirHassani
Download or read book Methods and Models in Mathematical Programming written by S. A. MirHassani and published by Springer Nature. This book was released on 2019-12-09 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on mathematical modeling, describes the process of constructing and evaluating models, discusses the challenges and delicacies of the modeling process, and explicitly outlines the required rules and regulations so that the reader will be able to generalize and reuse concepts in other problems by relying on mathematical logic.Undergraduate and postgraduate students of different academic disciplines would find this book a suitable option preparing them for jobs and research fields requiring modeling techniques. Furthermore, this book can be used as a reference book for experts and practitioners requiring advanced skills of model building in their jobs.
Book Synopsis Introduction to Probability Models by : Wayne L. Winston
Download or read book Introduction to Probability Models written by Wayne L. Winston and published by Duxbury Resource Center. This book was released on 2004 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vol. 2: CD-ROM contains student editions of: ProcessModel, LINGO, Premium Solver, DecisionTools Suite including @RISK AND RISKOptimizer, Data files.
Book Synopsis A Programmer's Introduction to Mathematics by : Jeremy Kun
Download or read book A Programmer's Introduction to Mathematics written by Jeremy Kun and published by . This book was released on 2020-05-17 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.
Download or read book AMPL written by Robert Fourer and published by . This book was released on 1993 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Linear and Integer Programming by : Abdul Bari
Download or read book Linear and Integer Programming written by Abdul Bari and published by Cambridge Scholars Publishing. This book was released on 2019-10-25 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is primarily intended for undergraduate and postgraduate students of statistics, mathematics, operations research, and engineering. It provides the basic concepts and methods of linear and integer linear programming. The text begins with an introduction containing the mathematical background to the subject matter, and goes on to discuss advancements the field. Formulations of various problems in diverse fields in linear and integer programming formats are also presented here. The book’s presentation of the solution of various numerical problems makes the subject matter and the methods detailed in the text more lucid and easier to comprehend.
Book Synopsis Mathematical Programming and Game Theory for Decision Making by : S. K. Neogy
Download or read book Mathematical Programming and Game Theory for Decision Making written by S. K. Neogy and published by World Scientific. This book was released on 2008 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book presents recent developments and state-of-the-art review in various areas of mathematical programming and game theory. It is a peer-reviewed research monograph under the ISI Platinum Jubilee Series on Statistical Science and Interdisciplinary Research. This volume provides a panoramic view of theory and the applications of the methods of mathematical programming to problems in statistics, finance, games and electrical networks. It also provides an important as well as timely overview of research trends and focuses on the exciting areas like support vector machines, bilevel programming, interior point method for convex quadratic programming, cooperative games, non-cooperative games and stochastic games. Researchers, professionals and advanced graduates will find the book an essential resource for current work in mathematical programming, game theory and their applications. Sample Chapter(s). Foreword (45 KB). Chapter 1: Mathematical Programming and its Applications in Finance (177 KB). Contents: Mathematical Programming and Its Applications in Finance (L C Thomas); Anti-Stalling Pivot Rule for Linear Programs with Totally Unimodular Coefficient Matrix (S N Kabadi & A P Punnen); A New Practically Efficient Interior Point Method for Convex Quadratic Programming (K G Murty); A General Framework for the Analysis of Sets of Constraints (R Caron & T Traynor), Tolerance-Based Algorithms for the Traveling Salesman Problem (D Ghosh et al.); On the Membership Problem of the Pedigree Polytope (T S Arthanari); Exact Algorithms for a One-Defective Vertex Colouring Problem (N Achuthan et al.); Complementarity Problem Involving a Vertical Block Matrix and Its Solution Using Neural Network Model (S K Neogy et al.); Fuzzy Twin Support Vector Machines for Pattern Classification (R Khemchandani et al.); An Overview of the Minimum Sum of Absolute Errors Regression (S C Narula & J F Wellington); Hedging Against the Market with No Short Selling (S A Clark & C Srinivasan); Mathematical Programming and Electrical Network Analysis II: Computational Linear Algebra Through Network Analysis (H Narayanan); Dynamic Optimal Control Policy in Price and Quality for High Technology Product (A K Bardhan & U Chanda); Forecasting for Supply Chain and Portfolio Management (K G Murty); Variational Analysis in Bilevel Programming (S Dempe et al.); Game Engineering (R J Aumann); Games of Connectivity (P Dubey & R Garg); A Robust Feedback Nash Equilibrium in a Climate Change Policy Game (M Hennlock); De Facto Delegation and Proposer Rules (H Imai & K Yonezaki); The Bargaining Set in Effectivity Function (D Razafimahatolotra); Dynamic Oligopoly as a Mixed Large Game OCo Toy Market (A Wiszniewska-Matyszkiel); On Some Classes of Balanced Games (R B Bapat); Market Equilibrium for Combinatorial Auctions and the Matching Core of Nonnegative TU Games (S Lahiri); Continuity, Manifolds, and Arrow''s Social Choice Problem (K Saukkonen); On a Mixture Class of Stochastic Games with Ordered Field Property (S K Neogy). Readership: Researchers, professionals and advanced students in mathematical programming, game theory, management sciences and computational mathematics.
Download or read book The Book of R written by Tilman M. Davies and published by No Starch Press. This book was released on 2016-07-16 with total page 833 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
Book Synopsis Doing Math with Python by : Amit Saha
Download or read book Doing Math with Python written by Amit Saha and published by No Starch Press. This book was released on 2015-08-01 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doing Math with Python shows you how to use Python to delve into high school–level math topics like statistics, geometry, probability, and calculus. You’ll start with simple projects, like a factoring program and a quadratic-equation solver, and then create more complex projects once you’ve gotten the hang of things. Along the way, you’ll discover new ways to explore math and gain valuable programming skills that you’ll use throughout your study of math and computer science. Learn how to: –Describe your data with statistics, and visualize it with line graphs, bar charts, and scatter plots –Explore set theory and probability with programs for coin flips, dicing, and other games of chance –Solve algebra problems using Python’s symbolic math functions –Draw geometric shapes and explore fractals like the Barnsley fern, the Sierpinski triangle, and the Mandelbrot set –Write programs to find derivatives and integrate functions Creative coding challenges and applied examples help you see how you can put your new math and coding skills into practice. You’ll write an inequality solver, plot gravity’s effect on how far a bullet will travel, shuffle a deck of cards, estimate the area of a circle by throwing 100,000 "darts" at a board, explore the relationship between the Fibonacci sequence and the golden ratio, and more. Whether you’re interested in math but have yet to dip into programming or you’re a teacher looking to bring programming into the classroom, you’ll find that Python makes programming easy and practical. Let Python handle the grunt work while you focus on the math. Uses Python 3
Book Synopsis Mathematical Programming for Agricultural, Environmental, and Resource Economics by : Harry M. Kaiser
Download or read book Mathematical Programming for Agricultural, Environmental, and Resource Economics written by Harry M. Kaiser and published by Wiley. This book was released on 2012-01-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Programming Models for Agriculture, Environmental, and Resource Economics provides a comprehensive overview of mathematical programming models and their applications to real world and important problems confronting agricultural, environmental, and resource economists. Unlike most mathematical programming books, the principal focus of this text is on applications of these techniques and models to the fields of agricultural, environmental, and resource economics. The three fundamental goals of the book are to provide the reader with: (1) a level of background sufficient to apply mathematical programming techniques to real world policy and business to conduct solid research and analysis, (2) a variety of applications of mathematical programming to important problems in the areas of agricultural, environmental, and resource economics, and (3) a firm foundation for preparation to more advanced, Ph.D. level books on linear and/or nonlinear programming. Despite its introductory nature, the text places significant emphasis on real world applications of mathematical programming to decision problems. A wide array of examples and case studies are used to convey the various programming techniques available to decision analysts.
Download or read book Statistics written by David W. Scott and published by John Wiley & Sons. This book was released on 2020-07-13 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistic: A Concise Mathematical Introduction for Students and Scientists offers a one academic term text that prepares the student to broaden their skills in statistics, probability and inference, prior to selecting their follow-on courses in their chosen fields, whether it be engineering, computer science, programming, data sciences, business or economics. The book places focus early on continuous measurements, as well as discrete random variables. By invoking simple and intuitive models and geometric probability, discrete and continuous experiments and probabilities are discussed throughout the book in a natural way. Classical probability, random variables, and inference are discussed, as well as material on understanding data and topics of special interest. Topics discussed include: • Classical equally likely outcomes • Variety of models of discrete and continuous probability laws • Likelihood function and ratio • Inference • Bayesian statistics With the growth in the volume of data generated in many disciplines that is enabling the growth in data science, companies now demand statistically literate scientists and this textbook is the answer, suited for undergraduates studying science or engineering, be it computer science, economics, life sciences, environmental, business, amongst many others. Basic knowledge of bivariate calculus, R language, Matematica and JMP is useful, however there is an accompanying website including sample R and Mathematica code to help instructors and students.
Book Synopsis Fractional Programming by : I.M. Stancu-Minasian
Download or read book Fractional Programming written by I.M. Stancu-Minasian and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical programming has know a spectacular diversification in the last few decades. This process has happened both at the level of mathematical research and at the level of the applications generated by the solution methods that were created. To write a monograph dedicated to a certain domain of mathematical programming is, under such circumstances,especially difficult. In the present monograph we opt for the domain of fractional programming. Interest of this subject was generated by the fact that various optimization problems from engineering and economics consider the minimization of a ratio between physical and/or economical functions, for example cost/time, cost/volume,cost/profit, or other quantities that measure the efficiency of a system. For example, the productivity of industrial systems, defined as the ratio between the realized services in a system within a given period of time and the utilized resources, is used as one of the best indicators of the quality of their operation. Such problems, where the objective function appears as a ratio of functions, constitute fractional programming problem. Due to its importance in modeling various decision processes in management science, operational research, and economics, and also due to its frequent appearance in other problems that are not necessarily economical, such as information theory, numerical analysis, stochastic programming, decomposition algorithms for large linear systems, etc., the fractional programming method has received particular attention in the last three decades.