Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Mathematical Models Of Tumor Immune System Dynamics
Download Mathematical Models Of Tumor Immune System Dynamics full books in PDF, epub, and Kindle. Read online Mathematical Models Of Tumor Immune System Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis A Survey of Models for Tumor-Immune System Dynamics by : John A. Adam
Download or read book A Survey of Models for Tumor-Immune System Dynamics written by John A. Adam and published by Springer Science & Business Media. This book was released on 2012-10-06 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modeling and Immunology An enormous amount of human effort and economic resources has been directed in this century to the fight against cancer. The purpose, of course, has been to find strategies to overcome this hard, challenging and seemingly endless struggle. We can readily imagine that even greater efforts will be required in the next century. The hope is that ultimately humanity will be successful; success will have been achieved when it is possible to activate and control the immune system in its competition against neoplastic cells. Dealing with the above-mentioned problem requires the fullest pos sible cooperation among scientists working in different fields: biology, im munology, medicine, physics and, we believe, mathematics. Certainly, bi ologists and immunologists will make the greatest contribution to the re search. However, it is now increasingly recognized that mathematics and computer science may well able to make major contributions to such prob lems. We cannot expect mathematicians alone to solve fundamental prob lems in immunology and (in particular) cancer research, but valuable sup port, however modest, can be provided by mathematicians to the research aspirations of biologists and immunologists working in this field.
Book Synopsis A Survey of Models for Tumor-Immune System Dynamics by : John A. Adam
Download or read book A Survey of Models for Tumor-Immune System Dynamics written by John A. Adam and published by Springer Science & Business Media. This book was released on 1997 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book is a collection of seven interdisciplinary surveys on modeling tumor dynamics and interactions between tumors and immune system. The goal is to provide an accessible, comprehensive report on the field and to help define a framework for future interdisciplinary research activity. Modeling and simulation of general behaviors of immune systems are also discussed. Each survey carefully covers a specialized field and provides a detailed description of the present state-of-the-art in research. The reader will be able to obtain essential information on the methodological approach used and on the models that are categorized and used. The book is an excellent resource and survey for applied mathematicians, mathematical biologists and biologists interested in modeling methods in immunology and related sciences.
Book Synopsis A Survey of Models for Tumor-Immune System Dynamics by : John Adam
Download or read book A Survey of Models for Tumor-Immune System Dynamics written by John Adam and published by Birkhäuser. This book was released on 2012-09-27 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modeling and Immunology An enormous amount of human effort and economic resources has been directed in this century to the fight against cancer. The purpose, of course, has been to find strategies to overcome this hard, challenging and seemingly endless struggle. We can readily imagine that even greater efforts will be required in the next century. The hope is that ultimately humanity will be successful; success will have been achieved when it is possible to activate and control the immune system in its competition against neoplastic cells. Dealing with the above-mentioned problem requires the fullest pos sible cooperation among scientists working in different fields: biology, im munology, medicine, physics and, we believe, mathematics. Certainly, bi ologists and immunologists will make the greatest contribution to the re search. However, it is now increasingly recognized that mathematics and computer science may well able to make major contributions to such prob lems. We cannot expect mathematicians alone to solve fundamental prob lems in immunology and (in particular) cancer research, but valuable sup port, however modest, can be provided by mathematicians to the research aspirations of biologists and immunologists working in this field.
Book Synopsis Dynamics Of Cancer: Mathematical Foundations Of Oncology by : Dominik Wodarz
Download or read book Dynamics Of Cancer: Mathematical Foundations Of Oncology written by Dominik Wodarz and published by World Scientific. This book was released on 2014-04-24 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book aims to provide an introduction to mathematical models that describe the dynamics of tumor growth and the evolution of tumor cells. It can be used as a textbook for advanced undergraduate or graduate courses, and also serves as a reference book for researchers. The book has a strong evolutionary component and reflects the viewpoint that cancer can be understood rationally through a combination of mathematical and biological tools. It can be used both by mathematicians and biologists. Mathematically, the book starts with relatively simple ordinary differential equation models, and subsequently explores more complex stochastic and spatial models. Biologically, the book starts with explorations of the basic dynamics of tumor growth, including competitive interactions among cells, and subsequently moves on to the evolutionary dynamics of cancer cells, including scenarios of cancer initiation, progression, and treatment. The book finishes with a discussion of advanced topics, which describe how some of the mathematical concepts can be used to gain insights into a variety of questions, such as epigenetics, telomeres, gene therapy, and social interactions of cancer cells.
Book Synopsis Mathematical Models of Tumor-Immune System Dynamics by : Amina Eladdadi
Download or read book Mathematical Models of Tumor-Immune System Dynamics written by Amina Eladdadi and published by Springer. This book was released on 2014-11-06 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in a variety of fields within mathematical and biological sciences.
Book Synopsis Understanding Complex Biological Systems with Mathematics by : Ami Radunskaya
Download or read book Understanding Complex Biological Systems with Mathematics written by Ami Radunskaya and published by Springer. This book was released on 2018-10-24 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume examines a variety of biological and medical problems using mathematical models to understand complex system dynamics. Featured topics include autism spectrum disorder, ectoparasites and allogrooming, argasid ticks dynamics, super-fast nematocyst firing, cancer-immune population dynamics, and the spread of disease through populations. Applications are investigated with mathematical models using a variety of techniques in ordinary and partial differential equations, difference equations, Markov-chain models, Monte-Carlo simulations, network theory, image analysis, and immersed boundary method. Each article offers a thorough explanation of the methodologies used and numerous tables and color illustrations to explain key results. This volume is suitable for graduate students and researchers interested in current applications of mathematical models in the biosciences. The research featured in this volume began among newly-formed collaborative groups at the 2017 Women Advancing Mathematical Biology Workshop that took place at the Mathematical Biosciences Institute in Columbus, Ohio. The groups spent one intensive week working at MBI and continued their collaborations after the workshop, resulting in the work presented in this volume.
Book Synopsis Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease by : Gennady Bocharov
Download or read book Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease written by Gennady Bocharov and published by Frontiers Media SA. This book was released on 2020-02-24 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The immune system provides the host organism with defense mechanisms against invading pathogens and tumor development and it plays an active role in tissue and organ regeneration. Deviations from the normal physiological functioning of the immune system can lead to the development of diseases with various pathologies including autoimmune diseases and cancer. Modern research in immunology is characterized by an unprecedented level of detail that has progressed towards viewing the immune system as numerous components that function together as a whole network. Currently, we are facing significant difficulties in analyzing the data being generated from high-throughput technologies for understanding immune system dynamics and functions, a problem known as the ‘curse of dimensionality’. As the mainstream research in mathematical immunology is based on low-resolution models, a fundamental question is how complex the mathematical models should be? To respond to this challenging issue, we advocate a hypothesis-driven approach to formulate and apply available mathematical modelling technologies for understanding the complexity of the immune system. Moreover, pure empirical analyses of immune system behavior and the system’s response to external perturbations can only produce a static description of the individual components of the immune system and the interactions between them. Shifting our view of the immune system from a static schematic perception to a dynamic multi-level system is a daunting task. It requires the development of appropriate mathematical methodologies for the holistic and quantitative analysis of multi-level molecular and cellular networks. Their coordinated behavior is dynamically controlled via distributed feedback and feedforward mechanisms which altogether orchestrate immune system functions. The molecular regulatory loops inherent to the immune system that mediate cellular behaviors, e.g. exhaustion, suppression, activation and tuning, can be analyzed using mathematical categories such as multi-stability, switches, ultra-sensitivity, distributed system, graph dynamics, or hierarchical control. GB is supported by the Russian Science Foundation (grant 18-11-00171). AM is also supported by grants from the Spanish Ministry of Economy, Industry and Competitiveness and FEDER grant no. SAF2016-75505-R, the “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0370) and the Russian Science Foundation (grant 18-11-00171).
Book Synopsis Cancer Modelling and Simulation by : Luigi Preziosi
Download or read book Cancer Modelling and Simulation written by Luigi Preziosi and published by CRC Press. This book was released on 2003-06-18 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding how cancer tumours develop and spread is vital for finding treatments and cures. Cancer Modelling and Simulation demonstrates how mathematical modelling and computer simulation techniques are used to discover and gain insight into the dynamics of tumour development and growth. It highlights the benefits of tumour modelling, such as discovering optimal tumour therapy schedules, identifying the most promising candidates for further clinical investigation, and reducing the number of animal experiments. By examining the analytical, mathematical, and biological aspects of tumour growth and modelling, the book provides a common language and knowledge for professionals in several disciplines.
Book Synopsis Multiscale Cancer Modeling by : Thomas S. Deisboeck
Download or read book Multiscale Cancer Modeling written by Thomas S. Deisboeck and published by CRC Press. This book was released on 2010-12-08 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a complex disease process that spans multiple scales in space and time. Driven by cutting-edge mathematical and computational techniques, in silico biology provides powerful tools to investigate the mechanistic relationships of genes, cells, and tissues. It enables the creation of experimentally testable hypotheses, the integration of dat
Book Synopsis Bioinformatics and Computational Biology by : Sanguthevar Rajasekaran
Download or read book Bioinformatics and Computational Biology written by Sanguthevar Rajasekaran and published by Springer. This book was released on 2009-04-22 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International on Bioinformatics and Computational Biology, BICoB 2007, held in New Orleans, LA, USA, in April 2007. The 30 revised full papers presented together with 10 invited lectures were carefully reviewed and selected from 72 initial submissions. The papers address current research in the area of bioinformatics and computational biology fostering the advancement of computing techniques and their application to life sciences in topics such as genome analysis sequence analysis, phylogenetics, structural bioinformatics, analysis of high-throughput biological data, genetics and population analysis, as well as systems biology.
Book Synopsis Mathematical Oncology 2013 by : Alberto d'Onofrio
Download or read book Mathematical Oncology 2013 written by Alberto d'Onofrio and published by Springer. This book was released on 2014-10-16 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: With chapters on free boundaries, constitutive equations, stochastic dynamics, nonlinear diffusion–consumption, structured populations, and applications of optimal control theory, this volume presents the most significant recent results in the field of mathematical oncology. It highlights the work of world-class research teams, and explores how different researchers approach the same problem in various ways. Tumors are complex entities that present numerous challenges to the mathematical modeler. First and foremost, they grow. Thus their spatial mean field description involves a free boundary problem. Second, their interiors should be modeled as nontrivial porous media using constitutive equations. Third, at the end of anti-cancer therapy, a small number of malignant cells remain, making the post-treatment dynamics inherently stochastic. Fourth, the growth parameters of macroscopic tumors are non-constant, as are the parameters of anti-tumor therapies. Changes in these parameters may induce phenomena that are mathematically equivalent to phase transitions. Fifth, tumor vascular growth is random and self-similar. Finally, the drugs used in chemotherapy diffuse and are taken up by the cells in nonlinear ways. Mathematical Oncology 2013 will appeal to graduate students and researchers in biomathematics, computational and theoretical biology, biophysics, and bioengineering.
Book Synopsis Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling by : Dominik Wodarz
Download or read book Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling written by Dominik Wodarz and published by World Scientific. This book was released on 2005-01-24 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book shows how mathematical and computational models can be used to study cancer biology. It introduces the concept of mathematical modeling and then applies it to a variety of topics in cancer biology. These include aspects of cancer initiation and progression, such as the somatic evolution of cells, genetic instability, and angiogenesis. The book also discusses the use of mathematical models for the analysis of therapeutic approaches such as chemotherapy, immunotherapy, and the use of oncolytic viruses.
Book Synopsis Physics Of Cancer, The: Research Advances by : Bernard S Gerstman
Download or read book Physics Of Cancer, The: Research Advances written by Bernard S Gerstman and published by World Scientific. This book was released on 2020-12-03 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer deaths per capita have decreased in recent years, but the improvement is attributed to prevention, not treatment. The difficulty in treating cancer may be due to its 'complexity', in the mathematical physics sense of the word. Tumors evolve and spread in response to internal and external factors that involve feedback mechanisms and nonlinear behavior. Investigations of the nonlinear interactions among cells, and between cells and their environment, are crucial for developing a sufficiently detailed understanding of the system's emergent phenomenology to be able to control the behavior. In the case of cancer, controlling the system's behavior will mean the ability to treat and cure the disease. Physicists have been studying various complex, nonlinear systems for many years using a variety of techniques. These investigations have provided insights that allow physicists to make unique contributions towards the treatment of cancer.This interdisciplinary book presents recent advancements in physicists' research on cancer. The work presented in this volume uses a variety of physical, biochemical, mathematical, theoretical, and computational techniques to gain a deeper molecular and cellular understanding of the horrific disease that is cancer.
Book Synopsis Mathematical Modelling in Biomedicine by : Vitaly Volpert
Download or read book Mathematical Modelling in Biomedicine written by Vitaly Volpert and published by MDPI. This book was released on 2021-01-26 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modelling in biomedicine is a rapidly developing scientific discipline at the intersection of medicine, biology, mathematics, physics, and computer science. Its progress is stimulated by fundamental scientific questions and by the applications to public health. This book represents a collection of papers devoted to mathematical modelling of various physiological problems in normal and pathological conditions. It covers a broad range of topics including cardiovascular system and diseases, heart and brain modelling, tumor growth, viral infections, and immune response. Computational models of blood circulation are used to study the influence of heart arrhythmias on coronary blood flow and on operating modes for left-ventricle-assisted devices. Wave propagation in the cardiac tissue is investigated in order to show the influence of tissue heterogeneity and fibrosis. The models of tumor growth are used to determine optimal protocols of antiangiogenic and radiotherapy. The models of viral hepatitis kinetics are considered for the parameter identification, and the evolution of viral quasi-species is investigated. The book presents the state-of-the-art in mathematical modelling in biomedicine and opens new perspectives in this passionate field of research.
Book Synopsis Computational Fluid and Solid Mechanics 2003 by : K.J Bathe
Download or read book Computational Fluid and Solid Mechanics 2003 written by K.J Bathe and published by Elsevier. This book was released on 2003-06-02 with total page 2485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics.Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design.The eight tasks are: - The automatic solution of mathematical models - Effective numerical schemes for fluid flows - The development of an effective mesh-free numerical solution method - The development of numerical procedures for multiphysics problems - The development of numerical procedures for multiscale problems - The modelling of uncertainties - The analysis of complete life cycles of systems - Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features - Bridges the gap between academic researchers and practitioners in industry - Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda - Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis
Book Synopsis Selected Topics in Cancer Modeling by : Nicola Bellomo
Download or read book Selected Topics in Cancer Modeling written by Nicola Bellomo and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of selected chapters offers a comprehensive overview of state-of-the-art mathematical methods and tools for modeling and analyzing cancer phenomena. Topics covered include stochastic evolutionary models of cancer initiation and progression, tumor cords and their response to anticancer agents, and immune competition in tumor progression and prevention. The complexity of modeling living matter requires the development of new mathematical methods and ideas. This volume, written by first-rate researchers in the field of mathematical biology, is one of the first steps in that direction.
Book Synopsis Introduction to Mathematical Oncology by : Yang Kuang
Download or read book Introduction to Mathematical Oncology written by Yang Kuang and published by CRC Press. This book was released on 2016-04-05 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models. After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts. Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology.