Python Algorithms

Download Python Algorithms PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1430232382
Total Pages : 325 pages
Book Rating : 4.4/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Python Algorithms by : Magnus Lie Hetland

Download or read book Python Algorithms written by Magnus Lie Hetland and published by Apress. This book was released on 2011-02-27 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Algorithms explains the Python approach to algorithm analysis and design. Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques. The book deals with some of the most important and challenging areas of programming and computer science, but in a highly pedagogic and readable manner. The book covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others himself.

Python Algorithms

Download Python Algorithms PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484200551
Total Pages : 303 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Python Algorithms by : Magnus Lie Hetland

Download or read book Python Algorithms written by Magnus Lie Hetland and published by Apress. This book was released on 2014-09-17 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Algorithms, Second Edition explains the Python approach to algorithm analysis and design. Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques. The book deals with some of the most important and challenging areas of programming and computer science in a highly readable manner. It covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others.

Mastering Python Algorithms

Download Mastering Python Algorithms PDF Online Free

Author :
Publisher : HiTeX Press
ISBN 13 :
Total Pages : 302 pages
Book Rating : 4.:/5 (661 download)

DOWNLOAD NOW!


Book Synopsis Mastering Python Algorithms by : Robert Johnson

Download or read book Mastering Python Algorithms written by Robert Johnson and published by HiTeX Press. This book was released on 2024-10-26 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Mastering Python Algorithms: Practical Solutions for Complex Problems" is an essential guide for anyone eager to delve into the world of algorithmic design and implementation using Python. Structured to cater to various levels of learners, this book meticulously covers foundational principles and advanced algorithmic techniques. Whether you're a student, a developer, or a data scientist, you'll find the blend of theoretical insights and hands-on Python applications both enriching and practical. Spanning key areas from sorting and searching algorithms to the intricacies of graph theory and dynamic programming, the book provides in-depth explanations paired with Python code examples. It also delves into contemporary machine learning approaches and optimization methods, all while introducing readers to the nuances of Python’s advanced features that can significantly enhance algorithmic efficiency. By combining clear narrative with expert exploration of Python's rich ecosystem, "Mastering Python Algorithms" ensures readers are well-equipped to tackle diverse computational challenges with confidence. The emphasis on both performance analysis and implementation strategies guarantees that upon completion, readers will not only grasp complex algorithmic concepts but also be able to apply them effectively in real-world situations.

Pro Machine Learning Algorithms

Download Pro Machine Learning Algorithms PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484235649
Total Pages : 379 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Pro Machine Learning Algorithms by : V Kishore Ayyadevara

Download or read book Pro Machine Learning Algorithms written by V Kishore Ayyadevara and published by Apress. This book was released on 2018-06-30 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R. You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers. You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. What You Will Learn Get an in-depth understanding of all the major machine learning and deep learning algorithms Fully appreciate the pitfalls to avoid while building models Implement machine learning algorithms in the cloud Follow a hands-on approach through case studies for each algorithm Gain the tricks of ensemble learning to build more accurate models Discover the basics of programming in R/Python and the Keras framework for deep learning Who This Book Is For Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.

Mastering Python

Download Mastering Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785289136
Total Pages : 486 pages
Book Rating : 4.7/5 (852 download)

DOWNLOAD NOW!


Book Synopsis Mastering Python by : Rick van Hattem

Download or read book Mastering Python written by Rick van Hattem and published by Packt Publishing Ltd. This book was released on 2016-04-29 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the art of writing beautiful and powerful Python by using all of the features that Python 3.5 offers About This Book Become familiar with the most important and advanced parts of the Python code style Learn the trickier aspects of Python and put it in a structured context for deeper understanding of the language Offers an expert's-eye overview of how these advanced tasks fit together in Python as a whole along with practical examples Who This Book Is For Almost anyone can learn to write working script and create high quality code but they might lack a structured understanding of what it means to be 'Pythonic'. If you are a Python programmer who wants to code efficiently by getting the syntax and usage of a few intricate Python techniques exactly right, this book is for you. What You Will Learn Create a virtualenv and start a new project Understand how and when to use the functional programming paradigm Get familiar with the different ways the decorators can be written in Understand the power of generators and coroutines without digressing into lambda calculus Create metaclasses and how it makes working with Python far easier Generate HTML documentation out of documents and code using Sphinx Learn how to track and optimize application performance, both memory and cpu Use the multiprocessing library, not just locally but also across multiple machines Get a basic understanding of packaging and creating your own libraries/applications In Detail Python is a dynamic programming language. It is known for its high readability and hence it is often the first language learned by new programmers. Python being multi-paradigm, it can be used to achieve the same thing in different ways and it is compatible across different platforms. Even if you find writing Python code easy, writing code that is efficient, easy to maintain, and reuse is not so straightforward. This book is an authoritative guide that will help you learn new advanced methods in a clear and contextualised way. It starts off by creating a project-specific environment using venv, introducing you to different Pythonic syntax and common pitfalls before moving on to cover the functional features in Python. It covers how to create different decorators, generators, and metaclasses. It also introduces you to functools.wraps and coroutines and how they work. Later on you will learn to use asyncio module for asynchronous clients and servers. You will also get familiar with different testing systems such as py.test, doctest, and unittest, and debugging tools such as Python debugger and faulthandler. You will learn to optimize application performance so that it works efficiently across multiple machines and Python versions. Finally, it will teach you how to access C functions with a simple Python call. By the end of the book, you will be able to write more advanced scripts and take on bigger challenges. Style and Approach This book is a comprehensive guide that covers advanced features of the Python language, and communicate them with an authoritative understanding of the underlying rationale for how, when, and why to use them.

Mastering Machine Learning Algorithms

Download Mastering Machine Learning Algorithms PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788625900
Total Pages : 567 pages
Book Rating : 4.7/5 (886 download)

DOWNLOAD NOW!


Book Synopsis Mastering Machine Learning Algorithms by : Giuseppe Bonaccorso

Download or read book Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2018-05-25 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.

Problem Solving with Algorithms and Data Structures Using Python

Download Problem Solving with Algorithms and Data Structures Using Python PDF Online Free

Author :
Publisher : Franklin Beedle & Associates
ISBN 13 : 9781590282571
Total Pages : 0 pages
Book Rating : 4.2/5 (825 download)

DOWNLOAD NOW!


Book Synopsis Problem Solving with Algorithms and Data Structures Using Python by : Bradley N. Miller

Download or read book Problem Solving with Algorithms and Data Structures Using Python written by Bradley N. Miller and published by Franklin Beedle & Associates. This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thes book has three key features : fundamental data structures and algorithms; algorithm analysis in terms of Big-O running time in introducied early and applied throught; pytohn is used to facilitates the success in using and mastering data strucutes and algorithms.

Programming Collective Intelligence

Download Programming Collective Intelligence PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 0596550685
Total Pages : 361 pages
Book Rating : 4.5/5 (965 download)

DOWNLOAD NOW!


Book Synopsis Programming Collective Intelligence by : Toby Segaran

Download or read book Programming Collective Intelligence written by Toby Segaran and published by "O'Reilly Media, Inc.". This book was released on 2007-08-16 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details." -- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths." -- Tim Wolters, CTO, Collective Intellect

Programming Computer Vision with Python

Download Programming Computer Vision with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1449341934
Total Pages : 262 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Programming Computer Vision with Python by : Jan Erik Solem

Download or read book Programming Computer Vision with Python written by Jan Erik Solem and published by "O'Reilly Media, Inc.". This book was released on 2012-06-19 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you want a basic understanding of computer vision’s underlying theory and algorithms, this hands-on introduction is the ideal place to start. You’ll learn techniques for object recognition, 3D reconstruction, stereo imaging, augmented reality, and other computer vision applications as you follow clear examples written in Python. Programming Computer Vision with Python explains computer vision in broad terms that won’t bog you down in theory. You get complete code samples with explanations on how to reproduce and build upon each example, along with exercises to help you apply what you’ve learned. This book is ideal for students, researchers, and enthusiasts with basic programming and standard mathematical skills. Learn techniques used in robot navigation, medical image analysis, and other computer vision applications Work with image mappings and transforms, such as texture warping and panorama creation Compute 3D reconstructions from several images of the same scene Organize images based on similarity or content, using clustering methods Build efficient image retrieval techniques to search for images based on visual content Use algorithms to classify image content and recognize objects Access the popular OpenCV library through a Python interface

Hands-On Deep Learning Algorithms with Python

Download Hands-On Deep Learning Algorithms with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789344514
Total Pages : 498 pages
Book Rating : 4.7/5 (893 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Deep Learning Algorithms with Python by : Sudharsan Ravichandiran

Download or read book Hands-On Deep Learning Algorithms with Python written by Sudharsan Ravichandiran and published by Packt Publishing Ltd. This book was released on 2019-07-25 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand basic to advanced deep learning algorithms, the mathematical principles behind them, and their practical applications. Key FeaturesGet up-to-speed with building your own neural networks from scratch Gain insights into the mathematical principles behind deep learning algorithmsImplement popular deep learning algorithms such as CNNs, RNNs, and more using TensorFlowBook Description Deep learning is one of the most popular domains in the AI space, allowing you to develop multi-layered models of varying complexities. This book introduces you to popular deep learning algorithms—from basic to advanced—and shows you how to implement them from scratch using TensorFlow. Throughout the book, you will gain insights into each algorithm, the mathematical principles behind it, and how to implement it in the best possible manner. The book starts by explaining how you can build your own neural networks, followed by introducing you to TensorFlow, the powerful Python-based library for machine learning and deep learning. Moving on, you will get up to speed with gradient descent variants, such as NAG, AMSGrad, AdaDelta, Adam, and Nadam. The book will then provide you with insights into RNNs and LSTM and how to generate song lyrics with RNN. Next, you will master the math for convolutional and capsule networks, widely used for image recognition tasks. Then you learn how machines understand the semantics of words and documents using CBOW, skip-gram, and PV-DM. Afterward, you will explore various GANs, including InfoGAN and LSGAN, and autoencoders, such as contractive autoencoders and VAE. By the end of this book, you will be equipped with all the skills you need to implement deep learning in your own projects. What you will learnImplement basic-to-advanced deep learning algorithmsMaster the mathematics behind deep learning algorithmsBecome familiar with gradient descent and its variants, such as AMSGrad, AdaDelta, Adam, and NadamImplement recurrent networks, such as RNN, LSTM, GRU, and seq2seq modelsUnderstand how machines interpret images using CNN and capsule networksImplement different types of generative adversarial network, such as CGAN, CycleGAN, and StackGANExplore various types of autoencoder, such as Sparse autoencoders, DAE, CAE, and VAEWho this book is for If you are a machine learning engineer, data scientist, AI developer, or simply want to focus on neural networks and deep learning, this book is for you. Those who are completely new to deep learning, but have some experience in machine learning and Python programming, will also find the book very helpful.

Beginning Python

Download Beginning Python PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1430200723
Total Pages : 615 pages
Book Rating : 4.4/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Beginning Python by : Magnus Lie Hetland

Download or read book Beginning Python written by Magnus Lie Hetland and published by Apress. This book was released on 2006-11-07 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Totaling 900 pages and covering all of the topics important to new and intermediate users, Beginning Python is intended to be the most comprehensive book on the Python ever written. * The 15 sample projects in Beginning Python are attractive to novice programmers interested in learning by creating applications of timely interest, such as a P2P file-sharing application, Web-based bulletin-board, and an arcade game similar to the classic Space Invaders. * The author Magnus Lie Hetland, PhD, is author of Apress’ well-received 2002 title, Practical Python, ISBN: 1-59059-006-6. He’s also author of the popular online guide, Instant Python Hacking (http://www.hetland.org), from which both Practical Python and Beginning Python are based.

Mastering Python for Finance

Download Mastering Python for Finance PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1784397873
Total Pages : 340 pages
Book Rating : 4.7/5 (843 download)

DOWNLOAD NOW!


Book Synopsis Mastering Python for Finance by : James Ma Weiming

Download or read book Mastering Python for Finance written by James Ma Weiming and published by Packt Publishing Ltd. This book was released on 2015-04-29 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are an undergraduate or graduate student, a beginner to algorithmic development and research, or a software developer in the financial industry who is interested in using Python for quantitative methods in finance, this is the book for you. It would be helpful to have a bit of familiarity with basic Python usage, but no prior experience is required.

Python for Finance

Download Python for Finance PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492024295
Total Pages : 682 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Python for Finance by : Yves J. Hilpisch

Download or read book Python for Finance written by Yves J. Hilpisch and published by "O'Reilly Media, Inc.". This book was released on 2018-12-05 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.

Mastering Algorithms with Perl

Download Mastering Algorithms with Perl PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1449307191
Total Pages : 708 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Mastering Algorithms with Perl by : Jarkko Hietaniemi

Download or read book Mastering Algorithms with Perl written by Jarkko Hietaniemi and published by "O'Reilly Media, Inc.". This book was released on 1999-08-18 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many programmers would love to use Perl for projects that involve heavy lifting, but miss the many traditional algorithms that textbooks teach for other languages. Computer scientists have identified many techniques that a wide range of programs need, such as: Fuzzy pattern matching for text (identify misspellings!) Finding correlations in data Game-playing algorithms Predicting phenomena such as Web traffic Polynomial and spline fitting Using algorithms explained in this book, you too can carry out traditional programming tasks in a high-powered, efficient, easy-to-maintain manner with Perl.This book assumes a basic understanding of Perl syntax and functions, but not necessarily any background in computer science. The authors explain in a readable fashion the reasons for using various classic programming techniques, the kind of applications that use them, and -- most important -- how to code these algorithms in Perl.If you are an amateur programmer, this book will fill you in on the essential algorithms you need to solve problems like an expert. If you have already learned algorithms in other languages, you will be surprised at how much different (and often easier) it is to implement them in Perl. And yes, the book even has the obligatory fractal display program.There have been dozens of books on programming algorithms, some of them excellent, but never before has there been one that uses Perl.The authors include the editor of The Perl Journal and master librarian of CPAN; all are contributors to CPAN and have archived much of the code in this book there."This book was so exciting I lost sleep reading it." Tom Christiansen

Mastering Machine Learning Algorithms

Download Mastering Machine Learning Algorithms PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838821910
Total Pages : 799 pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Mastering Machine Learning Algorithms by : Giuseppe Bonaccorso

Download or read book Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2020-01-31 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key FeaturesUpdated to include new algorithms and techniquesCode updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applicationsBook Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learnUnderstand the characteristics of a machine learning algorithmImplement algorithms from supervised, semi-supervised, unsupervised, and RL domainsLearn how regression works in time-series analysis and risk predictionCreate, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work – train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANsWho this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.

Mastering Python

Download Mastering Python PDF Online Free

Author :
Publisher :
ISBN 13 : 9781989726013
Total Pages : 610 pages
Book Rating : 4.7/5 (26 download)

DOWNLOAD NOW!


Book Synopsis Mastering Python by : Michael B. White

Download or read book Mastering Python written by Michael B. White and published by . This book was released on 2019-01-13 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike some guides that give you just the basics that you need to get started, this book teaches you everything you need to know about using Python, including what you can use it for. Python is a diverse language and is the foundation of much of what we use in the world today. The reader will be happy to know that this programming language is relatively easy to learn. The book is divided into five sections to make the journey easy for the student: ✅ Part 1 - Data Structures and Algorithms ✅ Part 2 - Machine Learning ✅ Part 3 - Django ✅ Part 4 - ArcGIS Programming ✅ Part 5 - Software Development and Testing ���� If you want to master python, order your copy today. ����

Mastering Reinforcement Learning with Python

Download Mastering Reinforcement Learning with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838648496
Total Pages : 544 pages
Book Rating : 4.8/5 (386 download)

DOWNLOAD NOW!


Book Synopsis Mastering Reinforcement Learning with Python by : Enes Bilgin

Download or read book Mastering Reinforcement Learning with Python written by Enes Bilgin and published by Packt Publishing Ltd. This book was released on 2020-12-18 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practices Key FeaturesUnderstand how large-scale state-of-the-art RL algorithms and approaches workApply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and moreExplore tips and best practices from experts that will enable you to overcome real-world RL challengesBook Description Reinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you’ll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray’s RLlib package. You’ll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you’ll have mastered how to train and deploy your own RL agents for solving RL problems. What you will learnModel and solve complex sequential decision-making problems using RLDevelop a solid understanding of how state-of-the-art RL methods workUse Python and TensorFlow to code RL algorithms from scratchParallelize and scale up your RL implementations using Ray's RLlib packageGet in-depth knowledge of a wide variety of RL topicsUnderstand the trade-offs between different RL approachesDiscover and address the challenges of implementing RL in the real worldWho this book is for This book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.