Markov Decision Processes

Download Markov Decision Processes PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118625870
Total Pages : 544 pages
Book Rating : 4.1/5 (186 download)

DOWNLOAD NOW!


Book Synopsis Markov Decision Processes by : Martin L. Puterman

Download or read book Markov Decision Processes written by Martin L. Puterman and published by John Wiley & Sons. This book was released on 2014-08-28 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential." —Zentralblatt fur Mathematik ". . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes." —Journal of the American Statistical Association

Handbook of Markov Decision Processes

Download Handbook of Markov Decision Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461508053
Total Pages : 560 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Markov Decision Processes by : Eugene A. Feinberg

Download or read book Handbook of Markov Decision Processes written by Eugene A. Feinberg and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.

Markov Decision Processes with Applications to Finance

Download Markov Decision Processes with Applications to Finance PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642183247
Total Pages : 393 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Markov Decision Processes with Applications to Finance by : Nicole Bäuerle

Download or read book Markov Decision Processes with Applications to Finance written by Nicole Bäuerle and published by Springer Science & Business Media. This book was released on 2011-06-06 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of Markov decision processes focuses on controlled Markov chains in discrete time. The authors establish the theory for general state and action spaces and at the same time show its application by means of numerous examples, mostly taken from the fields of finance and operations research. By using a structural approach many technicalities (concerning measure theory) are avoided. They cover problems with finite and infinite horizons, as well as partially observable Markov decision processes, piecewise deterministic Markov decision processes and stopping problems. The book presents Markov decision processes in action and includes various state-of-the-art applications with a particular view towards finance. It is useful for upper-level undergraduates, Master's students and researchers in both applied probability and finance, and provides exercises (without solutions).

Markov Decision Processes in Artificial Intelligence

Download Markov Decision Processes in Artificial Intelligence PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118620100
Total Pages : 367 pages
Book Rating : 4.1/5 (186 download)

DOWNLOAD NOW!


Book Synopsis Markov Decision Processes in Artificial Intelligence by : Olivier Sigaud

Download or read book Markov Decision Processes in Artificial Intelligence written by Olivier Sigaud and published by John Wiley & Sons. This book was released on 2013-03-04 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as reinforcement learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in artificial intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, reinforcement learning, partially observable MDPs, Markov games and the use of non-classical criteria). It then presents more advanced research trends in the field and gives some concrete examples using illustrative real life applications.

Markov Decision Processes in Practice

Download Markov Decision Processes in Practice PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319477668
Total Pages : 563 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Markov Decision Processes in Practice by : Richard J. Boucherie

Download or read book Markov Decision Processes in Practice written by Richard J. Boucherie and published by Springer. This book was released on 2017-03-10 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents classical Markov Decision Processes (MDP) for real-life applications and optimization. MDP allows users to develop and formally support approximate and simple decision rules, and this book showcases state-of-the-art applications in which MDP was key to the solution approach. The book is divided into six parts. Part 1 is devoted to the state-of-the-art theoretical foundation of MDP, including approximate methods such as policy improvement, successive approximation and infinite state spaces as well as an instructive chapter on Approximate Dynamic Programming. It then continues with five parts of specific and non-exhaustive application areas. Part 2 covers MDP healthcare applications, which includes different screening procedures, appointment scheduling, ambulance scheduling and blood management. Part 3 explores MDP modeling within transportation. This ranges from public to private transportation, from airports and traffic lights to car parking or charging your electric car . Part 4 contains three chapters that illustrates the structure of approximate policies for production or manufacturing structures. In Part 5, communications is highlighted as an important application area for MDP. It includes Gittins indices, down-to-earth call centers and wireless sensor networks. Finally Part 6 is dedicated to financial modeling, offering an instructive review to account for financial portfolios and derivatives under proportional transactional costs. The MDP applications in this book illustrate a variety of both standard and non-standard aspects of MDP modeling and its practical use. This book should appeal to readers for practitioning, academic research and educational purposes, with a background in, among others, operations research, mathematics, computer science, and industrial engineering.

Competitive Markov Decision Processes

Download Competitive Markov Decision Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461240549
Total Pages : 400 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Competitive Markov Decision Processes by : Jerzy Filar

Download or read book Competitive Markov Decision Processes written by Jerzy Filar and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a text covering the central concepts and techniques of Competitive Markov Decision Processes. It is an attempt to present a rig orous treatment that combines two significant research topics: Stochastic Games and Markov Decision Processes, which have been studied exten sively, and at times quite independently, by mathematicians, operations researchers, engineers, and economists. Since Markov decision processes can be viewed as a special noncompeti tive case of stochastic games, we introduce the new terminology Competi tive Markov Decision Processes that emphasizes the importance of the link between these two topics and of the properties of the underlying Markov processes. The book is designed to be used either in a classroom or for self-study by a mathematically mature reader. In the Introduction (Chapter 1) we outline a number of advanced undergraduate and graduate courses for which this book could usefully serve as a text. A characteristic feature of competitive Markov decision processes - and one that inspired our long-standing interest - is that they can serve as an "orchestra" containing the "instruments" of much of modern applied (and at times even pure) mathematics. They constitute a topic where the instruments of linear algebra, applied probability, mathematical program ming, analysis, and even algebraic geometry can be "played" sometimes solo and sometimes in harmony to produce either beautifully simple or equally beautiful, but baroque, melodies, that is, theorems.

Decision Making Under Uncertainty

Download Decision Making Under Uncertainty PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262331713
Total Pages : 350 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Decision Making Under Uncertainty by : Mykel J. Kochenderfer

Download or read book Decision Making Under Uncertainty written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2015-07-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Applied Probability Models with Optimization Applications

Download Applied Probability Models with Optimization Applications PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486318648
Total Pages : 226 pages
Book Rating : 4.4/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Applied Probability Models with Optimization Applications by : Sheldon M. Ross

Download or read book Applied Probability Models with Optimization Applications written by Sheldon M. Ross and published by Courier Corporation. This book was released on 2013-04-15 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise advanced-level introduction to stochastic processes that arise in applied probability. Poisson process, renewal theory, Markov chains, Brownian motion, much more. Problems. References. Bibliography. 1970 edition.

Markov Chains and Decision Processes for Engineers and Managers

Download Markov Chains and Decision Processes for Engineers and Managers PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420051121
Total Pages : 478 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Markov Chains and Decision Processes for Engineers and Managers by : Theodore J. Sheskin

Download or read book Markov Chains and Decision Processes for Engineers and Managers written by Theodore J. Sheskin and published by CRC Press. This book was released on 2016-04-19 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recognized as a powerful tool for dealing with uncertainty, Markov modeling can enhance your ability to analyze complex production and service systems. However, most books on Markov chains or decision processes are often either highly theoretical, with few examples, or highly prescriptive, with little justification for the steps of the algorithms u

Continuous-Time Markov Decision Processes

Download Continuous-Time Markov Decision Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642025471
Total Pages : 240 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Continuous-Time Markov Decision Processes by : Xianping Guo

Download or read book Continuous-Time Markov Decision Processes written by Xianping Guo and published by Springer Science & Business Media. This book was released on 2009-09-18 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuous-time Markov decision processes (MDPs), also known as controlled Markov chains, are used for modeling decision-making problems that arise in operations research (for instance, inventory, manufacturing, and queueing systems), computer science, communications engineering, control of populations (such as fisheries and epidemics), and management science, among many other fields. This volume provides a unified, systematic, self-contained presentation of recent developments on the theory and applications of continuous-time MDPs. The MDPs in this volume include most of the cases that arise in applications, because they allow unbounded transition and reward/cost rates. Much of the material appears for the first time in book form.

Examples in Markov Decision Processes

Download Examples in Markov Decision Processes PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 1848167946
Total Pages : 308 pages
Book Rating : 4.8/5 (481 download)

DOWNLOAD NOW!


Book Synopsis Examples in Markov Decision Processes by : A. B. Piunovskiy

Download or read book Examples in Markov Decision Processes written by A. B. Piunovskiy and published by World Scientific. This book was released on 2012 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, unexpected properties of optimization problems. Such examples illustrate the importance of conditions imposed in the theorems on Markov Decision Processes. Many of the examples are based upon examples published earlier in journal articles or textbooks while several other examples are new. The aim was to collect them together in one reference book which should be considered as a complement to existing monographs on Markov decision processes.The book is self-contained and unified in presentation.The main theoretical statements and constructions are provided, and particular examples can be read independently of others. Examples in Markov Decision Processes is an essential source of reference for mathematicians and all those who apply the optimal control theory to practical purposes. When studying or using mathematical methods, the researcher must understand what can happen if some of the conditions imposed in rigorous theorems are not satisfied. Many examples confirming the importance of such conditions were published in different journal articles which are often difficult to find. This book brings together examples based upon such sources, along with several new ones. In addition, it indicates the areas where Markov decision processes can be used. Active researchers can refer to this book on applicability of mathematical methods and theorems. It is also suitable reading for graduate and research students where they will better understand the theory.

Partially Observed Markov Decision Processes

Download Partially Observed Markov Decision Processes PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107134609
Total Pages : 491 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Partially Observed Markov Decision Processes by : Vikram Krishnamurthy

Download or read book Partially Observed Markov Decision Processes written by Vikram Krishnamurthy and published by Cambridge University Press. This book was released on 2016-03-21 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, whilst linking theory to real-world applications in controlled sensing. Computations are kept to a minimum, enabling students and researchers in engineering, operations research, and economics to understand the methods and determine the structure of their optimal solution.

Planning with Markov Decision Processes

Download Planning with Markov Decision Processes PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1608458865
Total Pages : 213 pages
Book Rating : 4.6/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Planning with Markov Decision Processes by : Mausam

Download or read book Planning with Markov Decision Processes written by Mausam and published by Morgan & Claypool Publishers. This book was released on 2012 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a concise introduction to the use of Markov Decision Processes for solving probabilistic planning problems, with an emphasis on the algorithmic perspective. It covers the whole spectrum of the field, from the basics to state-of-the-art optimal and approximation algorithms.

Constrained Markov Decision Processes

Download Constrained Markov Decision Processes PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351458248
Total Pages : 256 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Constrained Markov Decision Processes by : Eitan Altman

Download or read book Constrained Markov Decision Processes written by Eitan Altman and published by Routledge. This book was released on 2021-12-17 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other.

Reinforcement Learning

Download Reinforcement Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642276458
Total Pages : 653 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning by : Marco Wiering

Download or read book Reinforcement Learning written by Marco Wiering and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.

Operations Research and Health Care

Download Operations Research and Health Care PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402080662
Total Pages : 870 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Operations Research and Health Care by : Margaret L. Brandeau

Download or read book Operations Research and Health Care written by Margaret L. Brandeau and published by Springer Science & Business Media. This book was released on 2006-04-04 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt: In both rich and poor nations, public resources for health care are inadequate to meet demand. Policy makers and health care providers must determine how to provide the most effective health care to citizens using the limited resources that are available. This chapter describes current and future challenges in the delivery of health care, and outlines the role that operations research (OR) models can play in helping to solve those problems. The chapter concludes with an overview of this book – its intended audience, the areas covered, and a description of the subsequent chapters. KEY WORDS Health care delivery, Health care planning HEALTH CARE DELIVERY: PROBLEMS AND CHALLENGES 3 1.1 WORLDWIDE HEALTH: THE PAST 50 YEARS Human health has improved significantly in the last 50 years. In 1950, global life expectancy was 46 years [1]. That figure rose to 61 years by 1980 and to 67 years by 1998 [2]. Much of these gains occurred in low- and middle-income countries, and were due in large part to improved nutrition and sanitation, medical innovations, and improvements in public health infrastructure.

Simulation-based Algorithms for Markov Decision Processes

Download Simulation-based Algorithms for Markov Decision Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 :
Total Pages : 216 pages
Book Rating : 4.:/5 (321 download)

DOWNLOAD NOW!


Book Synopsis Simulation-based Algorithms for Markov Decision Processes by : Hyeong Soo Chang

Download or read book Simulation-based Algorithms for Markov Decision Processes written by Hyeong Soo Chang and published by Springer Science & Business Media. This book was released on 2007-02-13 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. This book brings the state-of-the-art research together for the first time. It provides practical modeling methods for many real-world problems with high dimensionality or complexity which have not hitherto been treatable with Markov decision processes.