Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Markov Chains On Metric Spaces
Download Markov Chains On Metric Spaces full books in PDF, epub, and Kindle. Read online Markov Chains On Metric Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Markov Chains on Metric Spaces by : Michel Benaïm
Download or read book Markov Chains on Metric Spaces written by Michel Benaïm and published by Springer Nature. This book was released on 2022-11-21 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to discrete-time Markov chains which evolve on a separable metric space. The focus is on the ergodic properties of such chains, i.e., on their long-term statistical behaviour. Among the main topics are existence and uniqueness of invariant probability measures, irreducibility, recurrence, regularizing properties for Markov kernels, and convergence to equilibrium. These concepts are investigated with tools such as Lyapunov functions, petite and small sets, Doeblin and accessible points, coupling, as well as key notions from classical ergodic theory. The theory is illustrated through several recurring classes of examples, e.g., random contractions, randomly switched vector fields, and stochastic differential equations, the latter providing a bridge to continuous-time Markov processes. The book can serve as the core for a semester- or year-long graduate course in probability theory with an emphasis on Markov chains or random dynamics. Some of the material is also well suited for an ergodic theory course. Readers should have taken an introductory course on probability theory, based on measure theory. While there is a chapter devoted to chains on a countable state space, a certain familiarity with Markov chains on a finite state space is also recommended.
Book Synopsis Markov Chains and Invariant Probabilities by : Onésimo Hernández-Lerma
Download or read book Markov Chains and Invariant Probabilities written by Onésimo Hernández-Lerma and published by Birkhäuser. This book was released on 2012-12-06 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Book Synopsis Probabilistic Approach to Geometry by : Motoko Kotani
Download or read book Probabilistic Approach to Geometry written by Motoko Kotani and published by Advanced Studies in Pure Mathe. This book was released on 2010-03 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first Seasonal Institute of the Mathematical Society of Japan (MSJ-SI) “Probabilistic Approach to Geometry” was held at Kyoto University, Japan, on 28th July 2008 - 8th August, 2008. The conference aimed to make interactions between Geometry and Probability Theory and seek for new directions of those research areas. This volume contains the proceedings, selected research articles based on the talks, including survey articles on random groups, rough paths, and heat kernels by the survey lecturers in the conference. The readers will benefit of exploring in this developing research area.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets except North America
Book Synopsis Markov Chains and Stochastic Stability by : Sean Meyn
Download or read book Markov Chains and Stochastic Stability written by Sean Meyn and published by Cambridge University Press. This book was released on 2009-04-02 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background. New commentary by Sean Meyn, including updated references, reflects developments since 1996.
Book Synopsis Labelled Markov Processes by : Prakash Panangaden
Download or read book Labelled Markov Processes written by Prakash Panangaden and published by Imperial College Press. This book was released on 2009 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Labelled Markov processes are probabilistic versions of labelled transition systems with continuous state spaces. The book covers basic probability and measure theory on continuous state spaces and then develops the theory of LMPs.
Book Synopsis Metric Embeddings by : Mikhail I. Ostrovskii
Download or read book Metric Embeddings written by Mikhail I. Ostrovskii and published by Walter de Gruyter. This book was released on 2013-06-26 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Embeddings of discrete metric spaces into Banach spaces recently became an important tool in computer science and topology. The purpose of the book is to present some of the most important techniques and results, mostly on bilipschitz and coarse embeddings. The topics include: (1) Embeddability of locally finite metric spaces into Banach spaces is finitely determined; (2) Constructions of embeddings; (3) Distortion in terms of Poincaré inequalities; (4) Constructions of families of expanders and of families of graphs with unbounded girth and lower bounds on average degrees; (5) Banach spaces which do not admit coarse embeddings of expanders; (6) Structure of metric spaces which are not coarsely embeddable into a Hilbert space; (7) Applications of Markov chains to embeddability problems; (8) Metric characterizations of properties of Banach spaces; (9) Lipschitz free spaces. Substantial part of the book is devoted to a detailed presentation of relevant results of Banach space theory and graph theory. The final chapter contains a list of open problems. Extensive bibliography is also included. Each chapter, except the open problems chapter, contains exercises and a notes and remarks section containing references, discussion of related results, and suggestions for further reading. The book will help readers to enter and to work in a very rapidly developing area having many important connections with different parts of mathematics and computer science.
Book Synopsis A First Look at Rigorous Probability Theory by : Jeffrey Seth Rosenthal
Download or read book A First Look at Rigorous Probability Theory written by Jeffrey Seth Rosenthal and published by World Scientific. This book was released on 2006 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features an introduction to probability theory using measure theory. This work provides proofs of the essential introductory results and presents the measure theory and mathematical details in terms of intuitive probabilistic concepts, rather than as separate, imposing subjects.
Book Synopsis Markov Chains and Dependability Theory by : Gerardo Rubino
Download or read book Markov Chains and Dependability Theory written by Gerardo Rubino and published by Cambridge University Press. This book was released on 2014-06-12 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers fundamental and applied results of Markov chain analysis for the evaluation of dependability metrics, for graduate students and researchers.
Book Synopsis Non-negative Matrices and Markov Chains by : E. Seneta
Download or read book Non-negative Matrices and Markov Chains written by E. Seneta and published by Springer Science & Business Media. This book was released on 2006-07-02 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its inception by Perron and Frobenius, the theory of non-negative matrices has developed enormously and is now being used and extended in applied fields of study as diverse as probability theory, numerical analysis, demography, mathematical economics, and dynamic programming, while its development is still proceeding rapidly as a branch of pure mathematics in its own right. While there are books which cover this or that aspect of the theory, it is nevertheless not uncommon for workers in one or another branch of its development to be unaware of what is known in other branches, even though there is often formal overlap. One of the purposes of this book is to relate several aspects of the theory, insofar as this is possible. The author hopes that the book will be useful to mathematicians; but in particular to the workers in applied fields, so the mathematics has been kept as simple as could be managed. The mathematical requisites for reading it are: some knowledge of real-variable theory, and matrix theory; and a little knowledge of complex-variable; the emphasis is on real-variable methods. (There is only one part of the book, the second part of 55.5, which is of rather specialist interest, and requires deeper knowledge.) Appendices provide brief expositions of those areas of mathematics needed which may be less g- erally known to the average reader.
Book Synopsis Applied Probability by : Valérie Girardin
Download or read book Applied Probability written by Valérie Girardin and published by Springer. This book was released on 2018-09-12 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook addresses postgraduate students in applied mathematics, probability, and statistics, as well as computer scientists, biologists, physicists and economists, who are seeking a rigorous introduction to applied stochastic processes. Pursuing a pedagogic approach, the content follows a path of increasing complexity, from the simplest random sequences to the advanced stochastic processes. Illustrations are provided from many applied fields, together with connections to ergodic theory, information theory, reliability and insurance. The main content is also complemented by a wealth of examples and exercises with solutions.
Book Synopsis Markov Processes, Semigroups, and Generators by : Vassili N. Kolokoltsov
Download or read book Markov Processes, Semigroups, and Generators written by Vassili N. Kolokoltsov and published by Walter de Gruyter. This book was released on 2011 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work offers a highly useful, well developed reference on Markov processes, the universal model for random processes and evolutions. The wide range of applications, in exact sciences as well as in other areas like social studies, require a volume that offers a refresher on fundamentals before conveying the Markov processes and examples for
Download or read book Markov Chains written by Randal Douc and published by Springer. This book was released on 2018-12-11 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the classical theory of Markov chains on general state-spaces as well as many recent developments. The theoretical results are illustrated by simple examples, many of which are taken from Markov Chain Monte Carlo methods. The book is self-contained, while all the results are carefully and concisely proven. Bibliographical notes are added at the end of each chapter to provide an overview of the literature. Part I lays the foundations of the theory of Markov chain on general states-space. Part II covers the basic theory of irreducible Markov chains on general states-space, relying heavily on regeneration techniques. These two parts can serve as a text on general state-space applied Markov chain theory. Although the choice of topics is quite different from what is usually covered, where most of the emphasis is put on countable state space, a graduate student should be able to read almost all these developments without any mathematical background deeper than that needed to study countable state space (very little measure theory is required). Part III covers advanced topics on the theory of irreducible Markov chains. The emphasis is on geometric and subgeometric convergence rates and also on computable bounds. Some results appeared for a first time in a book and others are original. Part IV are selected topics on Markov chains, covering mostly hot recent developments.
Book Synopsis Probability on Trees and Networks by : Russell Lyons
Download or read book Probability on Trees and Networks written by Russell Lyons and published by Cambridge University Press. This book was released on 2017-01-20 with total page 1023 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks. Written by two leading researchers, the text emphasizes intuition, while giving complete proofs and more than 850 exercises. Many recent developments, in which the authors have played a leading role, are discussed, including percolation on trees and Cayley graphs, uniform spanning forests, the mass-transport technique, and connections on random walks on graphs to embedding in Hilbert space. This state-of-the-art account of probability on networks will be indispensable for graduate students and researchers alike.
Book Synopsis Mathematical Aspects of Mixing Times in Markov Chains by : Ravi R. Montenegro
Download or read book Mathematical Aspects of Mixing Times in Markov Chains written by Ravi R. Montenegro and published by Now Publishers Inc. This book was released on 2006 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Aspects of Mixing Times in Markov Chains is a comprehensive, well-written review of the subject that will be of interest to researchers and students in computer and mathematical sciences.
Book Synopsis Measure Theory and Probability Theory by : Krishna B. Athreya
Download or read book Measure Theory and Probability Theory written by Krishna B. Athreya and published by Springer Science & Business Media. This book was released on 2006-11-24 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate level textbook on measure theory and probability theory. It presents the main concepts and results in measure theory and probability theory in a simple and easy-to-understand way. It further provides heuristic explanations behind the theory to help students see the big picture. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. Prerequisites are kept to the minimal level and the book is intended primarily for first year Ph.D. students in mathematics and statistics.
Book Synopsis Fixed Point Theory in Probabilistic Metric Spaces by : O. Hadzic
Download or read book Fixed Point Theory in Probabilistic Metric Spaces written by O. Hadzic and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fixed point theory in probabilistic metric spaces can be considered as a part of Probabilistic Analysis, which is a very dynamic area of mathematical research. A primary aim of this monograph is to stimulate interest among scientists and students in this fascinating field. The text is self-contained for a reader with a modest knowledge of the metric fixed point theory. Several themes run through this book. The first is the theory of triangular norms (t-norms), which is closely related to fixed point theory in probabilistic metric spaces. Its recent development has had a strong influence upon the fixed point theory in probabilistic metric spaces. In Chapter 1 some basic properties of t-norms are presented and several special classes of t-norms are investigated. Chapter 2 is an overview of some basic definitions and examples from the theory of probabilistic metric spaces. Chapters 3, 4, and 5 deal with some single-valued and multi-valued probabilistic versions of the Banach contraction principle. In Chapter 6, some basic results in locally convex topological vector spaces are used and applied to fixed point theory in vector spaces. Audience: The book will be of value to graduate students, researchers, and applied mathematicians working in nonlinear analysis and probabilistic metric spaces.
Book Synopsis Probabilistic Metric Spaces by : B. Schweizer
Download or read book Probabilistic Metric Spaces written by B. Schweizer and published by Courier Corporation. This book was released on 2011-11-30 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This distinctly nonclassical treatment focuses on developing aspects that differ from the theory of ordinary metric spaces, working directly with probability distribution functions rather than random variables. The two-part treatment begins with an overview that discusses the theory's historical evolution, followed by a development of related mathematical machinery. The presentation defines all needed concepts, states all necessary results, and provides relevant proofs. The second part opens with definitions of probabilistic metric spaces and proceeds to examinations of special classes of probabilistic metric spaces, topologies, and several related structures, such as probabilistic normed and inner-product spaces. Throughout, the authors focus on developing aspects that differ from the theory of ordinary metric spaces, rather than simply transferring known metric space results to a more general setting.