Information Technology and Systems

Download Information Technology and Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030118908
Total Pages : 976 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Information Technology and Systems by : Álvaro Rocha

Download or read book Information Technology and Systems written by Álvaro Rocha and published by Springer. This book was released on 2019-01-28 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a selection of articles from The 2019 International Conference on Information Technology & Systems (ICITS’19), held at the Universidad de Las Fuerzas Armadas, in Quito, Ecuador, on 6th to 8th February 2019. ICIST is a global forum for researchers and practitioners to present and discuss recent findings and innovations, current trends, professional experiences and challenges of modern information technology and systems research, together with their technological development and applications. The main topics covered are: information and knowledge management; organizational models and information systems; software and systems modeling; software systems, architectures, applications and tools; multimedia systems and applications; computer networks, mobility and pervasive systems; intelligent and decision support systems; big data analytics and applications; human–computer interaction; ethics, computers & security; health informatics; information technologies in education; cybersecurity and cyber-defense; electromagnetics, sensors and antennas for security.

Machine Learning in Insurance

Download Machine Learning in Insurance PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039364472
Total Pages : 260 pages
Book Rating : 4.0/5 (393 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Insurance by : Jens Perch Nielsen

Download or read book Machine Learning in Insurance written by Jens Perch Nielsen and published by MDPI. This book was released on 2020-12-02 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries’ “preferred methods” were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure.

Machine Learning: ECML 2005

Download Machine Learning: ECML 2005 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540292438
Total Pages : 784 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning: ECML 2005 by : João Gama

Download or read book Machine Learning: ECML 2005 written by João Gama and published by Springer Science & Business Media. This book was released on 2005-09-22 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 16th European Conference on Machine Learning, ECML 2005, jointly held with PKDD 2005 in Porto, Portugal, in October 2005. The 40 revised full papers and 32 revised short papers presented together with abstracts of 6 invited talks were carefully reviewed and selected from 335 papers submitted to ECML and 30 papers submitted to both, ECML and PKDD. The papers present a wealth of new results in the area and address all current issues in machine learning.

Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques

Download Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119133122
Total Pages : 406 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques by : Bart Baesens

Download or read book Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques written by Bart Baesens and published by John Wiley & Sons. This book was released on 2015-08-17 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention. It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak. Examine fraud patterns in historical data Utilize labeled, unlabeled, and networked data Detect fraud before the damage cascades Reduce losses, increase recovery, and tighten security The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.

Machine Learning with SVM and Other Kernel Methods

Download Machine Learning with SVM and Other Kernel Methods PDF Online Free

Author :
Publisher : PHI Learning Pvt. Ltd.
ISBN 13 : 8120334353
Total Pages : 495 pages
Book Rating : 4.1/5 (23 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with SVM and Other Kernel Methods by : K.P. Soman

Download or read book Machine Learning with SVM and Other Kernel Methods written by K.P. Soman and published by PHI Learning Pvt. Ltd.. This book was released on 2009-02-02 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Support vector machines (SVMs) represent a breakthrough in the theory of learning systems. It is a new generation of learning algorithms based on recent advances in statistical learning theory. Designed for the undergraduate students of computer science and engineering, this book provides a comprehensive introduction to the state-of-the-art algorithm and techniques in this field. It covers most of the well known algorithms supplemented with code and data. One Class, Multiclass and hierarchical SVMs are included which will help the students to solve any pattern classification problems with ease and that too in Excel. KEY FEATURES  Extensive coverage of Lagrangian duality and iterative methods for optimization  Separate chapters on kernel based spectral clustering, text mining, and other applications in computational linguistics and speech processing  A chapter on latest sequential minimization algorithms and its modifications to do online learning  Step-by-step method of solving the SVM based classification problem in Excel.  Kernel versions of PCA, CCA and ICA The CD accompanying the book includes animations on solving SVM training problem in Microsoft EXCEL and by using SVMLight software . In addition, Matlab codes are given for all the formulations of SVM along with the data sets mentioned in the exercise section of each chapter.

The Digital Journey of Banking and Insurance, Volume II

Download The Digital Journey of Banking and Insurance, Volume II PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030788296
Total Pages : 362 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis The Digital Journey of Banking and Insurance, Volume II by : Volker Liermann

Download or read book The Digital Journey of Banking and Insurance, Volume II written by Volker Liermann and published by Springer Nature. This book was released on 2021-10-27 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the second one of three volumes, gives practical examples by a number of use cases showing how to take first steps in the digital journey of banks and insurance companies. The angle shifts over the volumes from a business-driven approach in “Disruption and DNA” to a strong technical focus in “Data Storage, Processing and Analysis”, leaving “Digitalization and Machine Learning Applications” with the business and technical aspects in-between. This second volume mainly emphasizes use cases as well as the methods and technologies applied to drive digital transformation (such as processes, leveraging computational power and machine learning models).

Machine Learning Applications for Accounting Disclosure and Fraud Detection

Download Machine Learning Applications for Accounting Disclosure and Fraud Detection PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 179984806X
Total Pages : 270 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Applications for Accounting Disclosure and Fraud Detection by : Papadakis, Stylianos

Download or read book Machine Learning Applications for Accounting Disclosure and Fraud Detection written by Papadakis, Stylianos and published by IGI Global. This book was released on 2020-10-02 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: The prediction of the valuation of the “quality” of firm accounting disclosure is an emerging economic problem that has not been adequately analyzed in the relevant economic literature. While there are a plethora of machine learning methods and algorithms that have been implemented in recent years in the field of economics that aim at creating predictive models for detecting business failure, only a small amount of literature is provided towards the prediction of the “actual” financial performance of the business activity. Machine Learning Applications for Accounting Disclosure and Fraud Detection is a crucial reference work that uses machine learning techniques in accounting disclosure and identifies methodological aspects revealing the deployment of fraudulent behavior and fraud detection in the corporate environment. The book applies machine learning models to identify “quality” characteristics in corporate accounting disclosure, proposing specific tools for detecting core business fraud characteristics. Covering topics that include data mining; fraud governance, detection, and prevention; and internal auditing, this book is essential for accountants, auditors, managers, fraud detection experts, forensic accountants, financial accountants, IT specialists, corporate finance experts, business analysts, academicians, researchers, and students.

Network Anomaly Detection

Download Network Anomaly Detection PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 146658209X
Total Pages : 364 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Network Anomaly Detection by : Dhruba Kumar Bhattacharyya

Download or read book Network Anomaly Detection written by Dhruba Kumar Bhattacharyya and published by CRC Press. This book was released on 2013-06-18 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavi

Disrupting Finance

Download Disrupting Finance PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030023303
Total Pages : 194 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Disrupting Finance by : Theo Lynn

Download or read book Disrupting Finance written by Theo Lynn and published by Springer. This book was released on 2018-12-06 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access Pivot demonstrates how a variety of technologies act as innovation catalysts within the banking and financial services sector. Traditional banks and financial services are under increasing competition from global IT companies such as Google, Apple, Amazon and PayPal whilst facing pressure from investors to reduce costs, increase agility and improve customer retention. Technologies such as blockchain, cloud computing, mobile technologies, big data analytics and social media therefore have perhaps more potential in this industry and area of business than any other. This book defines a fintech ecosystem for the 21st century, providing a state-of-the art review of current literature, suggesting avenues for new research and offering perspectives from business, technology and industry.

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Download Fundamentals of Machine Learning for Predictive Data Analytics, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262361108
Total Pages : 853 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Machine Learning for Predictive Data Analytics, second edition by : John D. Kelleher

Download or read book Fundamentals of Machine Learning for Predictive Data Analytics, second edition written by John D. Kelleher and published by MIT Press. This book was released on 2020-10-20 with total page 853 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.

Connectionism in Perspective

Download Connectionism in Perspective PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444598766
Total Pages : 541 pages
Book Rating : 4.4/5 (445 download)

DOWNLOAD NOW!


Book Synopsis Connectionism in Perspective by : R. Pfeifer

Download or read book Connectionism in Perspective written by R. Pfeifer and published by Elsevier. This book was released on 1989-08-23 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: An evaluation of the merits, potential, and limits of Connectionism, this book also illustrates current research programs and recent trends.Connectionism (also known as Neural Networks) is an exciting new field which has brought together researchers from different areas such as artificial intelligence, computer science, cognitive science, neuroscience, physics, and complex dynamics. These researchers are applying the connectionist paradigm in an interdisciplinary way to the analysis and design of intelligent systems.In this book, researchers from the above-mentioned fields not only report on their most recent research results, but also describe Connectionism from the perspective of their own field, looking at issues such as: - the effects and the utility of Connectionism for their field - the potential and limitations of Connectionism - can it be combined with other approaches?

Statistical Bioinformatics

Download Statistical Bioinformatics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118211529
Total Pages : 337 pages
Book Rating : 4.1/5 (182 download)

DOWNLOAD NOW!


Book Synopsis Statistical Bioinformatics by : Jae K. Lee

Download or read book Statistical Bioinformatics written by Jae K. Lee and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an essential understanding of statistical concepts necessary for the analysis of genomic and proteomic data using computational techniques. The author presents both basic and advanced topics, focusing on those that are relevant to the computational analysis of large data sets in biology. Chapters begin with a description of a statistical concept and a current example from biomedical research, followed by more detailed presentation, discussion of limitations, and problems. The book starts with an introduction to probability and statistics for genome-wide data, and moves into topics such as clustering, classification, multi-dimensional visualization, experimental design, statistical resampling, and statistical network analysis. Clearly explains the use of bioinformatics tools in life sciences research without requiring an advanced background in math/statistics Enables biomedical and life sciences researchers to successfully evaluate the validity of their results and make inferences Enables statistical and quantitative researchers to rapidly learn novel statistical concepts and techniques appropriate for large biological data analysis Carefully revisits frequently used statistical approaches and highlights their limitations in large biological data analysis Offers programming examples and datasets Includes chapter problem sets, a glossary, a list of statistical notations, and appendices with references to background mathematical and technical material Features supplementary materials, including datasets, links, and a statistical package available online Statistical Bioinformatics is an ideal textbook for students in medicine, life sciences, and bioengineering, aimed at researchers who utilize computational tools for the analysis of genomic, proteomic, and many other emerging high-throughput molecular data. It may also serve as a rapid introduction to the bioinformatics science for statistical and computational students and audiences who have not experienced such analysis tasks before.

Python Machine Learning

Download Python Machine Learning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783555149
Total Pages : 455 pages
Book Rating : 4.7/5 (835 download)

DOWNLOAD NOW!


Book Synopsis Python Machine Learning by : Sebastian Raschka

Download or read book Python Machine Learning written by Sebastian Raschka and published by Packt Publishing Ltd. This book was released on 2015-09-23 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Machine Learning: ECML 2005

Download Machine Learning: ECML 2005 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540316922
Total Pages : 784 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning: ECML 2005 by : João Gama

Download or read book Machine Learning: ECML 2005 written by João Gama and published by Springer. This book was released on 2005-11-15 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: The European Conference on Machine Learning (ECML) and the European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD) were jointly organized this year for the ?fth time in a row, after some years of mutual independence before. After Freiburg (2001), Helsinki (2002), Cavtat (2003) and Pisa (2004), Porto received the 16th edition of ECML and the 9th PKDD in October 3–7. Having the two conferences together seems to be working well: 585 di?erent paper submissions were received for both events, which maintains the high s- mission standard of last year. Of these, 335 were submitted to ECML only, 220 to PKDD only and 30 to both. Such a high volume of scienti?c work required a tremendous e?ort from Area Chairs, Program Committee members and some additional reviewers. On average, PC members had 10 papers to evaluate, and Area Chairs had 25 papers to decide upon. We managed to have 3 highly qua- ?edindependentreviewsperpaper(withveryfewexceptions)andoneadditional overall input from one of the Area Chairs. After the authors’ responses and the online discussions for many of the papers, we arrived at the ?nal selection of 40 regular papers for ECML and 35 for PKDD. Besides these, 32 others were accepted as short papers for ECML and 35 for PKDD. This represents a joint acceptance rate of around 13% for regular papers and 25% overall. We thank all involved for all the e?ort with reviewing and selection of papers. Besidesthecoretechnicalprogram,ECMLandPKDDhad6invitedspeakers, 10 workshops, 8 tutorials and a Knowledge Discovery Challenge.

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance

Download Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance PDF Online Free

Author :
Publisher : International Monetary Fund
ISBN 13 : 1589063953
Total Pages : 35 pages
Book Rating : 4.5/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance by : El Bachir Boukherouaa

Download or read book Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance written by El Bachir Boukherouaa and published by International Monetary Fund. This book was released on 2021-10-22 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.

Handbook of Insurance

Download Handbook of Insurance PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461401550
Total Pages : 1133 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Insurance by : Georges Dionne

Download or read book Handbook of Insurance written by Georges Dionne and published by Springer Science & Business Media. This book was released on 2013-12-02 with total page 1133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of the Handbook of Insurance reviews the last forty years of research developments in insurance and its related fields. A single reference source for professors, researchers, graduate students, regulators, consultants and practitioners, the book starts with the history and foundations of risk and insurance theory, followed by a review of prevention and precaution, asymmetric information, risk management, insurance pricing, new financial innovations, reinsurance, corporate governance, capital allocation, securitization, systemic risk, insurance regulation, the industrial organization of insurance markets and other insurance market applications. It ends with health insurance, longevity risk, long-term care insurance, life insurance financial products and social insurance. This second version of the Handbook contains 15 new chapters. Each of the 37 chapters has been written by leading authorities in risk and insurance research, all contributions have been peer reviewed, and each chapter can be read independently of the others.