Disrupting Finance

Download Disrupting Finance PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030023303
Total Pages : 194 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Disrupting Finance by : Theo Lynn

Download or read book Disrupting Finance written by Theo Lynn and published by Springer. This book was released on 2018-12-06 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access Pivot demonstrates how a variety of technologies act as innovation catalysts within the banking and financial services sector. Traditional banks and financial services are under increasing competition from global IT companies such as Google, Apple, Amazon and PayPal whilst facing pressure from investors to reduce costs, increase agility and improve customer retention. Technologies such as blockchain, cloud computing, mobile technologies, big data analytics and social media therefore have perhaps more potential in this industry and area of business than any other. This book defines a fintech ecosystem for the 21st century, providing a state-of-the art review of current literature, suggesting avenues for new research and offering perspectives from business, technology and industry.

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance

Download Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance PDF Online Free

Author :
Publisher : International Monetary Fund
ISBN 13 : 1589063953
Total Pages : 35 pages
Book Rating : 4.5/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance by : El Bachir Boukherouaa

Download or read book Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance written by El Bachir Boukherouaa and published by International Monetary Fund. This book was released on 2021-10-22 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.

Machine Learning for Financial Risk Management with Python

Download Machine Learning for Financial Risk Management with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492085200
Total Pages : 334 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Financial Risk Management with Python by : Abdullah Karasan

Download or read book Machine Learning for Financial Risk Management with Python written by Abdullah Karasan and published by "O'Reilly Media, Inc.". This book was released on 2021-12-07 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, risk analysts, and quantitative and algorithmic analysts will examine Python-based machine learning and deep learning models for assessing financial risk. Building hands-on AI-based financial modeling skills, you'll learn how to replace traditional financial risk models with ML models. Author Abdullah Karasan helps you explore the theory behind financial risk modeling before diving into practical ways of employing ML models in modeling financial risk using Python. With this book, you will: Review classical time series applications and compare them with deep learning models Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning Improve market risk models (VaR and ES) using ML techniques and including liquidity dimension Develop a credit risk analysis using clustering and Bayesian approaches Capture different aspects of liquidity risk with a Gaussian mixture model and Copula model Use machine learning models for fraud detection Predict stock price crash and identify its determinants using machine learning models

Research Anthology on Business Continuity and Navigating Times of Crisis

Download Research Anthology on Business Continuity and Navigating Times of Crisis PDF Online Free

Author :
Publisher : Business Science Reference
ISBN 13 : 9781668445037
Total Pages : 0 pages
Book Rating : 4.4/5 (45 download)

DOWNLOAD NOW!


Book Synopsis Research Anthology on Business Continuity and Navigating Times of Crisis by : Information Resources Management Association

Download or read book Research Anthology on Business Continuity and Navigating Times of Crisis written by Information Resources Management Association and published by Business Science Reference. This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: When the COVID-19 pandemic caused a halt in global society, many business leaders found themselves unprepared for the unprecedented change that swept across industry. Whether the need to shift to remote work or the inability to safely conduct business during a global pandemic, many businesses struggled in the transition to the "new normal." In the wake of the pandemic, these struggles have created opportunities to study how businesses navigate these times of crisis. The Research Anthology on Business Continuity and Navigating Times of Crisis discusses the strategies, cases, and research surrounding business continuity throughout crises such as pandemics. This book analyzes business operations and the state of the economy during times of crisis and the leadership involved in recovery. Covering topics such as crisis management, entrepreneurship, and business sustainability, this four-volume comprehensive major reference work is a valuable resource for managers, CEOs, business leaders, entrepreneurs, professors and students of higher education, researchers, and academicians.

Machine Learning Applications for Accounting Disclosure and Fraud Detection

Download Machine Learning Applications for Accounting Disclosure and Fraud Detection PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 179984806X
Total Pages : 270 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Applications for Accounting Disclosure and Fraud Detection by : Papadakis, Stylianos

Download or read book Machine Learning Applications for Accounting Disclosure and Fraud Detection written by Papadakis, Stylianos and published by IGI Global. This book was released on 2020-10-02 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: The prediction of the valuation of the “quality” of firm accounting disclosure is an emerging economic problem that has not been adequately analyzed in the relevant economic literature. While there are a plethora of machine learning methods and algorithms that have been implemented in recent years in the field of economics that aim at creating predictive models for detecting business failure, only a small amount of literature is provided towards the prediction of the “actual” financial performance of the business activity. Machine Learning Applications for Accounting Disclosure and Fraud Detection is a crucial reference work that uses machine learning techniques in accounting disclosure and identifies methodological aspects revealing the deployment of fraudulent behavior and fraud detection in the corporate environment. The book applies machine learning models to identify “quality” characteristics in corporate accounting disclosure, proposing specific tools for detecting core business fraud characteristics. Covering topics that include data mining; fraud governance, detection, and prevention; and internal auditing, this book is essential for accountants, auditors, managers, fraud detection experts, forensic accountants, financial accountants, IT specialists, corporate finance experts, business analysts, academicians, researchers, and students.

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Artificial Intelligence in Banking

Download Artificial Intelligence in Banking PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 50 pages
Book Rating : 4.6/5 (347 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in Banking by : Introbooks

Download or read book Artificial Intelligence in Banking written by Introbooks and published by . This book was released on 2020-04-07 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: In these highly competitive times and with so many technological advancements, it is impossible for any industry to remain isolated and untouched by innovations. In this era of digital economy, the banking sector cannot exist and operate without the various digital tools offered by the ever new innovations happening in the field of Artificial Intelligence (AI) and its sub-set technologies. New technologies have enabled incredible progression in the finance industry. Artificial Intelligence (AI) and Machine Learning (ML) have provided the investors and customers with more innovative tools, new types of financial products and a new potential for growth.According to Cathy Bessant (the Chief Operations and Technology Officer, Bank of America), AI is not just a technology discussion. It is also a discussion about data and how it is used and protected. She says, "In a world focused on using AI in new ways, we're focused on using it wisely and responsibly."

Artificial Intelligence in Financial Markets

Download Artificial Intelligence in Financial Markets PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1137488808
Total Pages : 349 pages
Book Rating : 4.1/5 (374 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in Financial Markets by : Christian L. Dunis

Download or read book Artificial Intelligence in Financial Markets written by Christian L. Dunis and published by Springer. This book was released on 2016-11-21 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: As technology advancement has increased, so to have computational applications for forecasting, modelling and trading financial markets and information, and practitioners are finding ever more complex solutions to financial challenges. Neural networking is a highly effective, trainable algorithmic approach which emulates certain aspects of human brain functions, and is used extensively in financial forecasting allowing for quick investment decision making. This book presents the most cutting-edge artificial intelligence (AI)/neural networking applications for markets, assets and other areas of finance. Split into four sections, the book first explores time series analysis for forecasting and trading across a range of assets, including derivatives, exchange traded funds, debt and equity instruments. This section will focus on pattern recognition, market timing models, forecasting and trading of financial time series. Section II provides insights into macro and microeconomics and how AI techniques could be used to better understand and predict economic variables. Section III focuses on corporate finance and credit analysis providing an insight into corporate structures and credit, and establishing a relationship between financial statement analysis and the influence of various financial scenarios. Section IV focuses on portfolio management, exploring applications for portfolio theory, asset allocation and optimization. This book also provides some of the latest research in the field of artificial intelligence and finance, and provides in-depth analysis and highly applicable tools and techniques for practitioners and researchers in this field.

Risk Management and Regulation

Download Risk Management and Regulation PDF Online Free

Author :
Publisher : International Monetary Fund
ISBN 13 : 1484343913
Total Pages : 53 pages
Book Rating : 4.4/5 (843 download)

DOWNLOAD NOW!


Book Synopsis Risk Management and Regulation by : Tobias Adrian

Download or read book Risk Management and Regulation written by Tobias Adrian and published by International Monetary Fund. This book was released on 2018-08-01 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: The evolution of risk management has resulted from the interplay of financial crises, risk management practices, and regulatory actions. In the 1970s, research lay the intellectual foundations for the risk management practices that were systematically implemented in the 1980s as bond trading revolutionized Wall Street. Quants developed dynamic hedging, Value-at-Risk, and credit risk models based on the insights of financial economics. In parallel, the Basel I framework created a level playing field among banks across countries. Following the 1987 stock market crash, the near failure of Salomon Brothers, and the failure of Drexel Burnham Lambert, in 1996 the Basel Committee on Banking Supervision published the Market Risk Amendment to the Basel I Capital Accord; the amendment went into effect in 1998. It led to a migration of bank risk management practices toward market risk regulations. The framework was further developed in the Basel II Accord, which, however, from the very beginning, was labeled as being procyclical due to the reliance of capital requirements on contemporaneous volatility estimates. Indeed, the failure to measure and manage risk adequately can be viewed as a key contributor to the 2008 global financial crisis. Subsequent innovations in risk management practices have been dominated by regulatory innovations, including capital and liquidity stress testing, macroprudential surcharges, resolution regimes, and countercyclical capital requirements.

Machine Learning in Finance

Download Machine Learning in Finance PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030410684
Total Pages : 565 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Finance by : Matthew F. Dixon

Download or read book Machine Learning in Finance written by Matthew F. Dixon and published by Springer Nature. This book was released on 2020-07-01 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.

Bayesian Risk Management

Download Bayesian Risk Management PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118708601
Total Pages : 228 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Risk Management by : Matt Sekerke

Download or read book Bayesian Risk Management written by Matt Sekerke and published by John Wiley & Sons. This book was released on 2015-09-15 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: A risk measurement and management framework that takes model risk seriously Most financial risk models assume the future will look like the past, but effective risk management depends on identifying fundamental changes in the marketplace as they occur. Bayesian Risk Management details a more flexible approach to risk management, and provides tools to measure financial risk in a dynamic market environment. This book opens discussion about uncertainty in model parameters, model specifications, and model-driven forecasts in a way that standard statistical risk measurement does not. And unlike current machine learning-based methods, the framework presented here allows you to measure risk in a fully-Bayesian setting without losing the structure afforded by parametric risk and asset-pricing models. Recognize the assumptions embodied in classical statistics Quantify model risk along multiple dimensions without backtesting Model time series without assuming stationarity Estimate state-space time series models online with simulation methods Uncover uncertainty in workhorse risk and asset-pricing models Embed Bayesian thinking about risk within a complex organization Ignoring uncertainty in risk modeling creates an illusion of mastery and fosters erroneous decision-making. Firms who ignore the many dimensions of model risk measure too little risk, and end up taking on too much. Bayesian Risk Management provides a roadmap to better risk management through more circumspect measurement, with comprehensive treatment of model uncertainty.

AI and Big Data’s Potential for Disruptive Innovation

Download AI and Big Data’s Potential for Disruptive Innovation PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1522596895
Total Pages : 427 pages
Book Rating : 4.5/5 (225 download)

DOWNLOAD NOW!


Book Synopsis AI and Big Data’s Potential for Disruptive Innovation by : Strydom, Moses

Download or read book AI and Big Data’s Potential for Disruptive Innovation written by Strydom, Moses and published by IGI Global. This book was released on 2019-09-27 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data and artificial intelligence (AI) are at the forefront of technological advances that represent a potential transformational mega-trend—a new multipolar and innovative disruption. These technologies, and their associated management paradigm, are already rapidly impacting many industries and occupations, but in some sectors, the change is just beginning. Innovating ahead of emerging technologies is the new imperative for any organization that aspires to succeed in the next decade. Faced with the power of this AI movement, it is imperative to understand the dynamics and new codes required by the disruption and to adapt accordingly. AI and Big Data’s Potential for Disruptive Innovation provides emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative technologies in a variety of sectors including business, transportation, and healthcare. Featuring coverage on a broad range of topics such as semantic mapping, ethics in AI, and big data governance, this book is ideally designed for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research on the production of new and innovative mechanization and its disruptions.

Machine Learning for Risk Calculations

Download Machine Learning for Risk Calculations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119791383
Total Pages : 471 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Risk Calculations by : Ignacio Ruiz

Download or read book Machine Learning for Risk Calculations written by Ignacio Ruiz and published by John Wiley & Sons. This book was released on 2021-12-28 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art algorithmic deep learning and tensoring techniques for financial institutions The computational demand of risk calculations in financial institutions has ballooned and shows no sign of stopping. It is no longer viable to simply add more computing power to deal with this increased demand. The solution? Algorithmic solutions based on deep learning and Chebyshev tensors represent a practical way to reduce costs while simultaneously increasing risk calculation capabilities. Machine Learning for Risk Calculations: A Practitioner’s View provides an in-depth review of a number of algorithmic solutions and demonstrates how they can be used to overcome the massive computational burden of risk calculations in financial institutions. This book will get you started by reviewing fundamental techniques, including deep learning and Chebyshev tensors. You’ll then discover algorithmic tools that, in combination with the fundamentals, deliver actual solutions to the real problems financial institutions encounter on a regular basis. Numerical tests and examples demonstrate how these solutions can be applied to practical problems, including XVA and Counterparty Credit Risk, IMM capital, PFE, VaR, FRTB, Dynamic Initial Margin, pricing function calibration, volatility surface parametrisation, portfolio optimisation and others. Finally, you’ll uncover the benefits these techniques provide, the practicalities of implementing them, and the software which can be used. Review the fundamentals of deep learning and Chebyshev tensors Discover pioneering algorithmic techniques that can create new opportunities in complex risk calculation Learn how to apply the solutions to a wide range of real-life risk calculations. Download sample code used in the book, so you can follow along and experiment with your own calculations Realize improved risk management whilst overcoming the burden of limited computational power Quants, IT professionals, and financial risk managers will benefit from this practitioner-oriented approach to state-of-the-art risk calculation.

Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Download Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811202400
Total Pages : 5053 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) by : Cheng Few Lee

Download or read book Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.

Interest Rate Risk in the Banking Book

Download Interest Rate Risk in the Banking Book PDF Online Free

Author :
Publisher :
ISBN 13 : 9781782723257
Total Pages : 255 pages
Book Rating : 4.7/5 (232 download)

DOWNLOAD NOW!


Book Synopsis Interest Rate Risk in the Banking Book by : PAUL. NEWSON

Download or read book Interest Rate Risk in the Banking Book written by PAUL. NEWSON and published by . This book was released on 2017 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Machine Learning for Finance

Download Machine Learning for Finance PDF Online Free

Author :
Publisher : BPB Publications
ISBN 13 : 9389328624
Total Pages : 218 pages
Book Rating : 4.3/5 (893 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Finance by : Saurav Singla

Download or read book Machine Learning for Finance written by Saurav Singla and published by BPB Publications. This book was released on 2021-01-05 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand the essentials of Machine Learning and its impact in financial sector KEY FEATURESÊ _Explore the spectrum of machine learning and its usage. _Understand the NLP and Computer Vision and their use cases. _Understand the Neural Network, CNN, RNN and their applications. _ÊUnderstand the Reinforcement Learning and their applications. _Learn the rising application of Machine Learning in the Finance sector. Ê_Exposure to data mining, data visualization and data analytics. DESCRIPTION The fields of machining adapting, profound learning, and computerized reasoning are quickly extending and are probably going to keep on doing as such for a long time to come. There are many main impetuses for this, as quickly caught in this review. Now and again, the advancement has been emotional, opening new ways to deal with long-standing innovation challenges, for example, progresses in PC vision and picture investigation.Ê Ê The book demonstrates how to solve some of the most common issues in the financial industry.Ê The book addresses real-life problems faced by practitioners on a daily basis. The book explains how machine learning works on structured data, text, and images. You will cover the exploration of Na•ve Bayes, Normal Distribution, Clustering with Gaussian process, advanced neural network, sequence modeling, and reinforcement learning. Later chapters will discuss machine learning use cases in the finance sector and the implications of deep learning. The book ends with traditional machine learning algorithms. Ê Machine Learning has become very important in the finance industry, which is mostly used for better risk management and risk analysis. Better analysis leads to better decisions which lead to an increase in profit for financial institutions. Machine Learning to empower fintech to make massive profits by optimizing processes, maximizing efficiency, and increasing profitability. WHAT WILL YOU LEARN _ Ê Ê Ê You will grasp the most relevant techniques of Machine Learning for everyday use. _ Ê Ê Ê You will be confident in building and implementing ML algorithms. _ Ê Ê Ê Familiarize the adoption of Machine Learning for your business need. _ Ê Ê Ê Discover more advanced concepts applied in banking and other sectors today. _ Ê Ê Ê Build mastery skillset in designing smart AI applications including NLP, Computer Vision and Deep Learning. WHO THIS BOOK IS FORÊ Data Scientist, Machine Learning Engineers and Individuals who want to adopt machine learning in the financial domain. Practitioners are working in banks, asset management, hedge funds or working the first time in the finance domain. Individuals who want to learn about applications of machine learning in finance or individuals entering the fintech domain. TABLE OF CONTENTS 1.Introduction 2.Naive Bayes, Normal Distribution and Automatic Clustering Processes 3.Machine Learning for Data Structuring 4.Parsing Data Using NLP 5.Computer Vision 6.Neural Network, GBM and Gradient Descent 7.Sequence Modeling 8.Reinforcement Learning For Financial Markets 9.Finance Use Cases 10.Impact of Machine Learning on Fintech 11.Machine Learning in Finance 12.eKYC and Anti-Fraud Policy 13.Uses of Data Mining and Data Visualization 14.Advantages and Disadvantages of Machine Learning 15.Applications of Machine Learning in Other Industries 16.Ethical considerations in Artificial Intelligence 17.Artificial Intelligence in Banking 18.Common Machine Learning Algorithms 19.Frequently Asked Questions

Credit Risk Analytics

Download Credit Risk Analytics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119143985
Total Pages : 517 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Credit Risk Analytics by : Bart Baesens

Download or read book Credit Risk Analytics written by Bart Baesens and published by John Wiley & Sons. This book was released on 2016-10-03 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: The long-awaited, comprehensive guide to practical credit risk modeling Credit Risk Analytics provides a targeted training guide for risk managers looking to efficiently build or validate in-house models for credit risk management. Combining theory with practice, this book walks you through the fundamentals of credit risk management and shows you how to implement these concepts using the SAS credit risk management program, with helpful code provided. Coverage includes data analysis and preprocessing, credit scoring; PD and LGD estimation and forecasting, low default portfolios, correlation modeling and estimation, validation, implementation of prudential regulation, stress testing of existing modeling concepts, and more, to provide a one-stop tutorial and reference for credit risk analytics. The companion website offers examples of both real and simulated credit portfolio data to help you more easily implement the concepts discussed, and the expert author team provides practical insight on this real-world intersection of finance, statistics, and analytics. SAS is the preferred software for credit risk modeling due to its functionality and ability to process large amounts of data. This book shows you how to exploit the capabilities of this high-powered package to create clean, accurate credit risk management models. Understand the general concepts of credit risk management Validate and stress-test existing models Access working examples based on both real and simulated data Learn useful code for implementing and validating models in SAS Despite the high demand for in-house models, there is little comprehensive training available; practitioners are left to comb through piece-meal resources, executive training courses, and consultancies to cobble together the information they need. This book ends the search by providing a comprehensive, focused resource backed by expert guidance. Credit Risk Analytics is the reference every risk manager needs to streamline the modeling process.