Machine Learning Guide for Oil and Gas Using Python

Download Machine Learning Guide for Oil and Gas Using Python PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128219300
Total Pages : 478 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Guide for Oil and Gas Using Python by : Hoss Belyadi

Download or read book Machine Learning Guide for Oil and Gas Using Python written by Hoss Belyadi and published by Gulf Professional Publishing. This book was released on 2021-04-09 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges. - Helps readers understand how open-source Python can be utilized in practical oil and gas challenges - Covers the most commonly used algorithms for both supervised and unsupervised learning - Presents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques

Machine Learning Guide for Oil and Gas Using Python

Download Machine Learning Guide for Oil and Gas Using Python PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128219297
Total Pages : 476 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Guide for Oil and Gas Using Python by : Hoss Belyadi

Download or read book Machine Learning Guide for Oil and Gas Using Python written by Hoss Belyadi and published by Elsevier. This book was released on 2021-04-13 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges. Helps readers understand how open-source Python can be utilized in practical oil and gas challenges Covers the most commonly used algorithms for both supervised and unsupervised learning Presents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques

Machine Learning in the Oil and Gas Industry

Download Machine Learning in the Oil and Gas Industry PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 9781484260937
Total Pages : 300 pages
Book Rating : 4.2/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in the Oil and Gas Industry by : Yogendra Narayan Pandey

Download or read book Machine Learning in the Oil and Gas Industry written by Yogendra Narayan Pandey and published by Apress. This book was released on 2020-11-03 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of some interesting problems, which are good candidates for applying machine and deep learning approaches. The initial chapters provide a primer on the Python programming language used for implementing the algorithms; this is followed by an overview of supervised and unsupervised machine learning concepts. The authors provide industry examples using open source data sets along with practical explanations of the algorithms, without diving too deep into the theoretical aspects of the algorithms employed. Machine Learning in the Oil and Gas Industry covers problems encompassing diverse industry topics, including geophysics (seismic interpretation), geological modeling, reservoir engineering, and production engineering. Throughout the book, the emphasis is on providing a practical approach with step-by-step explanations and code examples for implementing machine and deep learning algorithms for solving real-life problems in the oil and gas industry. What You Will Learn Understanding the end-to-end industry life cycle and flow of data in the industrial operations of the oil and gas industry Get the basic concepts of computer programming and machine and deep learning required for implementing the algorithms used Study interesting industry problems that are good candidates for being solved by machine and deep learning Discover the practical considerations and challenges for executing machine and deep learning projects in the oil and gas industry Who This Book Is For Professionals in the oil and gas industry who can benefit from a practical understanding of the machine and deep learning approach to solving real-life problems.

Machine Learning and Data Science in the Oil and Gas Industry

Download Machine Learning and Data Science in the Oil and Gas Industry PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128209143
Total Pages : 290 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Science in the Oil and Gas Industry by : Patrick Bangert

Download or read book Machine Learning and Data Science in the Oil and Gas Industry written by Patrick Bangert and published by Gulf Professional Publishing. This book was released on 2021-03-04 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value. - Chart an overview of the techniques and tools of machine learning including all the non-technological aspects necessary to be successful - Gain practical understanding of machine learning used in oil and gas operations through contributed case studies - Learn change management skills that will help gain confidence in pursuing the technology - Understand the workflow of a full-scale project and where machine learning benefits (and where it does not)

Practical Machine Learning with Python

Download Practical Machine Learning with Python PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484232070
Total Pages : 545 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Practical Machine Learning with Python by : Dipanjan Sarkar

Download or read book Practical Machine Learning with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2017-12-20 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries and frameworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students

Applications of Artificial Intelligence Techniques in the Petroleum Industry

Download Applications of Artificial Intelligence Techniques in the Petroleum Industry PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128223855
Total Pages : 324 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Applications of Artificial Intelligence Techniques in the Petroleum Industry by : Abdolhossein Hemmati-Sarapardeh

Download or read book Applications of Artificial Intelligence Techniques in the Petroleum Industry written by Abdolhossein Hemmati-Sarapardeh and published by Gulf Professional Publishing. This book was released on 2020-08-26 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Artificial Intelligence Techniques in the Petroleum Industry gives engineers a critical resource to help them understand the machine learning that will solve specific engineering challenges. The reference begins with fundamentals, covering preprocessing of data, types of intelligent models, and training and optimization algorithms. The book moves on to methodically address artificial intelligence technology and applications by the upstream sector, covering exploration, drilling, reservoir and production engineering. Final sections cover current gaps and future challenges. - Teaches how to apply machine learning algorithms that work best in exploration, drilling, reservoir or production engineering - Helps readers increase their existing knowledge on intelligent data modeling, machine learning and artificial intelligence, with foundational chapters covering the preprocessing of data and training on algorithms - Provides tactics on how to cover complex projects such as shale gas, tight oils, and other types of unconventional reservoirs with more advanced model input

Machine Learning and Deep Learning Using Python and TensorFlow

Download Machine Learning and Deep Learning Using Python and TensorFlow PDF Online Free

Author :
Publisher : McGraw Hill Professional
ISBN 13 : 1260462307
Total Pages : 556 pages
Book Rating : 4.2/5 (64 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Deep Learning Using Python and TensorFlow by : Shailendra Kadre

Download or read book Machine Learning and Deep Learning Using Python and TensorFlow written by Shailendra Kadre and published by McGraw Hill Professional. This book was released on 2021-04-29 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand the principles and practices of machine learning and deep learning This hands-on guide lays out machine learning and deep learning techniques and technologies in a style that is approachable, using just the basic math required. Written by a pair of experts in the field, Machine Learning and Deep Learning Using Python and TensorFlow contains case studies in several industries, including banking, insurance, e-commerce, retail, and healthcare. The book shows how to utilize machine learning and deep learning functions in today’s smart devices and apps. You will get download links for datasets, code, and sample projects referred to in the text. Coverage includes: Machine learning and deep learning concepts Python programming and statistics fundamentals Regression and logistic regression Decision trees Model selection and cross-validation Cluster analysis Random forests and boosting Artificial neural networks TensorFlow and Keras Deep learning hyperparameters Convolutional neural networks Recurrent neural networks and long short-term memory

Machine Learning with Python Cookbook

Download Machine Learning with Python Cookbook PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491989335
Total Pages : 305 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with Python Cookbook by : Chris Albon

Download or read book Machine Learning with Python Cookbook written by Chris Albon and published by "O'Reilly Media, Inc.". This book was released on 2018-03-09 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models

Python Machine Learning for Beginners

Download Python Machine Learning for Beginners PDF Online Free

Author :
Publisher :
ISBN 13 : 9781734790153
Total Pages : 302 pages
Book Rating : 4.7/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Python Machine Learning for Beginners by : Ai Publishing

Download or read book Python Machine Learning for Beginners written by Ai Publishing and published by . This book was released on 2020-10-23 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Machine Learning for BeginnersMachine Learning (ML) and Artificial Intelligence (AI) are here to stay. Yes, that's right. Based on a significant amount of data and evidence, it's obvious that ML and AI are here to stay.Consider any industry today. The practical applications of ML are really driving business results. Whether it's healthcare, e-commerce, government, transportation, social media sites, financial services, manufacturing, oil and gas, marketing and salesYou name it. The list goes on. There's no doubt that ML is going to play a decisive role in every domain in the future.But what does a Machine Learning professional do?A Machine Learning specialist develops intelligent algorithms that learn from data and also adapt to the data quickly. Then, these high-end algorithms make accurate predictions. Python Machine Learning for Beginners presents you with a hands-on approach to learn ML fast.How Is This Book Different?AI Publishing strongly believes in learning by doing methodology. With this in mind, we have crafted this book with care. You will find that the emphasis on the theoretical aspects of machine learning is equal to the emphasis on the practical aspects of the subject matter.You'll learn about data analysis and visualization in great detail in the first half of the book. Then, in the second half, you'll learn about machine learning and statistical models for data science.Each chapter presents you with the theoretical framework behind the different data science and machine learning techniques, and practical examples illustrate the working of these techniques.When you buy this book, your learning journey becomes so much easier. The reason is you get instant access to all the related learning material presented with this book--references, PDFs, Python codes, and exercises--on the publisher's website. All this material is available to you at no extra cost. You can download the ML datasets used in this book at runtime, or you can access them via the Resources/Datasets folder.You'll also find the short course on Python programming in the second chapter immensely useful, especially if you are new to Python. Since this book gives you access to all the Python codes and datasets, you only need access to a computer with the internet to get started. The topics covered include: Introduction and Environment Setup Python Crash Course Python NumPy Library for Data Analysis Introduction to Pandas Library for Data Analysis Data Visualization via Matplotlib, Seaborn, and Pandas Libraries Solving Regression Problems in ML Using Sklearn Library Solving Classification Problems in ML Using Sklearn Library Data Clustering with ML Using Sklearn Library Deep Learning with Python TensorFlow 2.0 Dimensionality Reduction with PCA and LDA Using Sklearn Click the BUY NOW button to start your Machine Learning journey.

Artificial Intelligence with Python

Download Artificial Intelligence with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1839216077
Total Pages : 619 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence with Python by : Alberto Artasanchez

Download or read book Artificial Intelligence with Python written by Alberto Artasanchez and published by Packt Publishing Ltd. This book was released on 2020-01-31 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.

Machine Learning for Algorithmic Trading

Download Machine Learning for Algorithmic Trading PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1839216786
Total Pages : 822 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Algorithmic Trading by : Stefan Jansen

Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Python Programming

Download Python Programming PDF Online Free

Author :
Publisher : Computer Science Academy
ISBN 13 : 9781802164480
Total Pages : 310 pages
Book Rating : 4.1/5 (644 download)

DOWNLOAD NOW!


Book Synopsis Python Programming by : Computer Science Academy

Download or read book Python Programming written by Computer Science Academy and published by Computer Science Academy. This book was released on 2021-03-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: !! 55% OFF for Bookstores!! NOW at 40.95 instead of 50.95 !! Buy it NOW and let your customers get addicted to this awesome book!

Learning Data Mining with Python

Download Learning Data Mining with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1784391204
Total Pages : 344 pages
Book Rating : 4.7/5 (843 download)

DOWNLOAD NOW!


Book Synopsis Learning Data Mining with Python by : Robert Layton

Download or read book Learning Data Mining with Python written by Robert Layton and published by Packt Publishing Ltd. This book was released on 2015-07-29 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The next step in the information age is to gain insights from the deluge of data coming our way. Data mining provides a way of finding this insight, and Python is one of the most popular languages for data mining, providing both power and flexibility in analysis. This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. Next, we move on to more complex data types including text, images, and graphs. In every chapter, we create models that solve real-world problems. There is a rich and varied set of libraries available in Python for data mining. This book covers a large number, including the IPython Notebook, pandas, scikit-learn and NLTK. Each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will gain a large insight into using Python for data mining, with a good knowledge and understanding of the algorithms and implementations.

Sculpting Data for ML

Download Sculpting Data for ML PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.5/5 (854 download)

DOWNLOAD NOW!


Book Synopsis Sculpting Data for ML by : Rishabh Misra

Download or read book Sculpting Data for ML written by Rishabh Misra and published by . This book was released on 2021-01-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the contemporary world of Artificial Intelligence and Machine Learning, data is the new oil. For Machine Learning algorithms to work their magic, it is imperative to lay a firm foundation with relevant data. Sculpting Data for ML introduces the readers to the first act of Machine Learning, Dataset Curation. This book puts forward practical tips to identify valuable information from the extensive amount of crude data available at our fingertips. The step-by-step guide accompanies code examples in Python from the extraction of real-world datasets and illustrates ways to hone the skills of extracting meaningful datasets. In addition, the book also dives deep into how data fits into the Machine Learning ecosystem and tries to highlight the impact good quality data can have on the Machine Learning system's performance. What's Inside? * Significance of data in Machine Learning * Identification of relevant data signals * End-to-end process of data collection and dataset construction * Overview of extraction tools like BeautifulSoup and Selenium * Step-by-step guide with Python code examples of real-world use cases * Synopsis of Data Preprocessing and Feature Engineering techniques * Introduction to Machine Learning paradigms from a data perspective This book is for Machine Learning researchers, practitioners, or enthusiasts who want to tackle the data availability challenges to address real-world problems. The authors Jigyasa Grover & Rishabh Misra are Machine Learning Engineers by profession and are passionate about tackling real-world problems leveraging their data curation and ML expertise. The book is endorsed by leading ML experts from both academia and industry. It has forewords by: * Julian McAuley, Associate Professor at University of California San Diego * Laurence Moroney, Lead Artificial Intelligence Advocate at Google * Mengting Wan, Senior Applied Scientist at Microsoft

Python Machine Learning By Example

Download Python Machine Learning By Example PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 178355312X
Total Pages : 249 pages
Book Rating : 4.7/5 (835 download)

DOWNLOAD NOW!


Book Synopsis Python Machine Learning By Example by : Yuxi (Hayden) Liu

Download or read book Python Machine Learning By Example written by Yuxi (Hayden) Liu and published by Packt Publishing Ltd. This book was released on 2017-05-31 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take tiny steps to enter the big world of data science through this interesting guide About This Book Learn the fundamentals of machine learning and build your own intelligent applications Master the art of building your own machine learning systems with this example-based practical guide Work with important classification and regression algorithms and other machine learning techniques Who This Book Is For This book is for anyone interested in entering the data science stream with machine learning. Basic familiarity with Python is assumed. What You Will Learn Exploit the power of Python to handle data extraction, manipulation, and exploration techniques Use Python to visualize data spread across multiple dimensions and extract useful features Dive deep into the world of analytics to predict situations correctly Implement machine learning classification and regression algorithms from scratch in Python Be amazed to see the algorithms in action Evaluate the performance of a machine learning model and optimize it Solve interesting real-world problems using machine learning and Python as the journey unfolds In Detail Data science and machine learning are some of the top buzzwords in the technical world today. A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning. This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression and model performance evaluation. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms – they are no more obscure as they thought. Also, you will be guided step by step to build your own models from scratch. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques. Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python. Interesting and easy-to-follow examples, to name some, news topic classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal. Style and approach This book is an enticing journey that starts from the very basics and gradually picks up pace as the story unfolds. Each concept is first succinctly defined in the larger context of things, followed by a detailed explanation of their application. Every concept is explained with the help of a project that solves a real-world problem, and involves hands-on work—giving you a deep insight into the world of machine learning. With simple yet rich language—Python—you will understand and be able to implement the examples with ease.

Machine Learning For Dummies

Download Machine Learning For Dummies PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119724015
Total Pages : 471 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning For Dummies by : John Paul Mueller

Download or read book Machine Learning For Dummies written by John Paul Mueller and published by John Wiley & Sons. This book was released on 2021-02-09 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd Edition of Machine Learning For Dummies doesn't assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don't need to be a math whiz to build fun new tools and apply them to your work and study. Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner's guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that's impacting lives for the better all over the world.

Machine Learning with R

Download Machine Learning with R PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1782162151
Total Pages : 587 pages
Book Rating : 4.7/5 (821 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with R by : Brett Lantz

Download or read book Machine Learning with R written by Brett Lantz and published by Packt Publishing Ltd. This book was released on 2013-10-25 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.