Understanding Machine Learning

Download Understanding Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107057132
Total Pages : 415 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Hypothesis Generation and Interpretation

Download Hypothesis Generation and Interpretation PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031435400
Total Pages : 380 pages
Book Rating : 4.0/5 (314 download)

DOWNLOAD NOW!


Book Synopsis Hypothesis Generation and Interpretation by : Hiroshi Ishikawa

Download or read book Hypothesis Generation and Interpretation written by Hiroshi Ishikawa and published by Springer Nature. This book was released on 2024-01-01 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses in detail on data science and data analysis and emphasizes the importance of data engineering and data management in the design of big data applications. The author uses patterns discovered in a collection of big data applications to provide design principles for hypothesis generation, integrating big data processing and management, machine learning and data mining techniques. The book proposes and explains innovative principles for interpreting hypotheses by integrating micro-explanations (those based on the explanation of analytical models and individual decisions within them) with macro-explanations (those based on applied processes and model generation). Practical case studies are used to demonstrate how hypothesis-generation and -interpretation technologies work. These are based on “social infrastructure” applications like in-bound tourism, disaster management, lunar and planetary exploration, and treatment of infectious diseases. The novel methods and technologies proposed in Hypothesis Generation and Interpretation are supported by the incorporation of historical perspectives on science and an emphasis on the origin and development of the ideas behind their design principles and patterns. Academic investigators and practitioners working on the further development and application of hypothesis generation and interpretation in big data computing, with backgrounds in data science and engineering, or the study of problem solving and scientific methods or who employ those ideas in fields like machine learning will find this book of considerable interest.

Transfer, Diffusion and Adoption of Next-Generation Digital Technologies

Download Transfer, Diffusion and Adoption of Next-Generation Digital Technologies PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031501888
Total Pages : 479 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Transfer, Diffusion and Adoption of Next-Generation Digital Technologies by : Sujeet K. Sharma

Download or read book Transfer, Diffusion and Adoption of Next-Generation Digital Technologies written by Sujeet K. Sharma and published by Springer Nature. This book was released on 2023-12-12 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the IFIP WG 8.6 International Working Conference on Transfer and Diffusion of IT, TDIT 2023, which took place in Nagpur, India, in December 2023. The 87 full papers and 23 short papers presented in these proceedings were carefully reviewed and selected from 209 submissions. The papers are organized in the following topical sections: Volume I: Digital technologies (artificial intelligence) adoption; digital platforms and applications; digital technologies in e-governance; metaverse and marketing. Volume II: Emerging technologies adoption; general IT adoption; healthcare IT adoption. Volume III: Industry 4.0; transfer, diffusion and adoption of next-generation digital technologies; diffusion and adoption of information technology.

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Exploratory Data Analytics for Healthcare

Download Exploratory Data Analytics for Healthcare PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000527018
Total Pages : 307 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Exploratory Data Analytics for Healthcare by : R. Lakshmana Kumar

Download or read book Exploratory Data Analytics for Healthcare written by R. Lakshmana Kumar and published by CRC Press. This book was released on 2021-12-23 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploratory data analysis helps to recognize natural patterns hidden in the data. This book describes the tools for hypothesis generation by visualizing data through graphical representation and provides insight into advanced analytics concepts in an easy way. The book addresses the complete data visualization technologies workflow, explores basic and high-level concepts of computer science and engineering in medical science, and provides an overview of the clinical scientific research areas that enables smart diagnosis equipment. It will discuss techniques and tools used to explore large volumes of medical data and offers case studies that focus on the innovative technological upgradation and challenges faced today. The primary audience for the book includes specialists, researchers, graduates, designers, experts, physicians, and engineers who are doing research in this domain.

Machine Learning Proceedings 1992

Download Machine Learning Proceedings 1992 PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 1483298531
Total Pages : 497 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Proceedings 1992 by : Peter Edwards

Download or read book Machine Learning Proceedings 1992 written by Peter Edwards and published by Morgan Kaufmann. This book was released on 2014-06-28 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Proceedings 1992

Machine Learning and Image Interpretation

Download Machine Learning and Image Interpretation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1489918167
Total Pages : 441 pages
Book Rating : 4.4/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Image Interpretation by : Terry Caelli

Download or read book Machine Learning and Image Interpretation written by Terry Caelli and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this groundbreaking new volume, computer researchers discuss the development of technologies and specific systems that can interpret data with respect to domain knowledge. Although the chapters each illuminate different aspects of image interpretation, all utilize a common approach - one that asserts such interpretation must involve perceptual learning in terms of automated knowledge acquisition and application, as well as feedback and consistency checks between encoding, feature extraction, and the known knowledge structures in a given application domain. The text is profusely illustrated with numerous figures and tables to reinforce the concepts discussed.

Discovery in Physics

Download Discovery in Physics PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 311078596X
Total Pages : 364 pages
Book Rating : 4.1/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Discovery in Physics by : Katharina Morik

Download or read book Discovery in Physics written by Katharina Morik and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-12-31 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is part of Artificial Intelligence since its beginning. Certainly, not learning would only allow the perfect being to show intelligent behavior. All others, be it humans or machines, need to learn in order to enhance their capabilities. In the eighties of the last century, learning from examples and modeling human learning strategies have been investigated in concert. The formal statistical basis of many learning methods has been put forward later on and is still an integral part of machine learning. Neural networks have always been in the toolbox of methods. Integrating all the pre-processing, exploitation of kernel functions, and transformation steps of a machine learning process into the architecture of a deep neural network increased the performance of this model type considerably. Modern machine learning is challenged on the one hand by the amount of data and on the other hand by the demand of real-time inference. This leads to an interest in computing architectures and modern processors. For a long time, the machine learning research could take the von-Neumann architecture for granted. All algorithms were designed for the classical CPU. Issues of implementation on a particular architecture have been ignored. This is no longer possible. The time for independently investigating machine learning and computational architecture is over. Computing architecture has experienced a similarly rampant development from mainframe or personal computers in the last century to now very large compute clusters on the one hand and ubiquitous computing of embedded systems in the Internet of Things on the other hand. Cyber-physical systems’ sensors produce a huge amount of streaming data which need to be stored and analyzed. Their actuators need to react in real-time. This clearly establishes a close connection with machine learning. Cyber-physical systems and systems in the Internet of Things consist of diverse components, heterogeneous both in hard- and software. Modern multi-core systems, graphic processors, memory technologies and hardware-software codesign offer opportunities for better implementations of machine learning models. Machine learning and embedded systems together now form a field of research which tackles leading edge problems in machine learning, algorithm engineering, and embedded systems. Machine learning today needs to make the resource demands of learning and inference meet the resource constraints of used computer architecture and platforms. A large variety of algorithms for the same learning method and, moreover, diverse implementations of an algorithm for particular computing architectures optimize learning with respect to resource efficiency while keeping some guarantees of accuracy. The trade-off between a decreased energy consumption and an increased error rate, to just give an example, needs to be theoretically shown for training a model and the model inference. Pruning and quantization are ways of reducing the resource requirements by either compressing or approximating the model. In addition to memory and energy consumption, timeliness is an important issue, since many embedded systems are integrated into large products that interact with the physical world. If the results are delivered too late, they may have become useless. As a result, real-time guarantees are needed for such systems. To efficiently utilize the available resources, e.g., processing power, memory, and accelerators, with respect to response time, energy consumption, and power dissipation, different scheduling algorithms and resource management strategies need to be developed. This book series addresses machine learning under resource constraints as well as the application of the described methods in various domains of science and engineering. Turning big data into smart data requires many steps of data analysis: methods for extracting and selecting features, filtering and cleaning the data, joining heterogeneous sources, aggregating the data, and learning predictions need to scale up. The algorithms are challenged on the one hand by high-throughput data, gigantic data sets like in astrophysics, on the other hand by high dimensions like in genetic data. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are applied to program executions in order to save resources. The three books will have the following subtopics: Volume 1: Machine Learning under Resource Constraints - Fundamentals Volume 2: Machine Learning and Physics under Resource Constraints - Discovery Volume 3: Machine Learning under Resource Constraints - Applications Volume 2 is about machine learning for knowledge discovery in particle and astroparticle physics. Their instruments, e.g., particle accelerators or telescopes, gather petabytes of data. Here, machine learning is necessary not only to process the vast amounts of data and to detect the relevant examples efficiently, but also as part of the knowledge discovery process itself. The physical knowledge is encoded in simulations that are used to train the machine learning models. At the same time, the interpretation of the learned models serves to expand the physical knowledge. This results in a cycle of theory enhancement supported by machine learning.

Organizational Cognition

Download Organizational Cognition PDF Online Free

Author :
Publisher : Psychology Press
ISBN 13 : 1135667187
Total Pages : 409 pages
Book Rating : 4.1/5 (356 download)

DOWNLOAD NOW!


Book Synopsis Organizational Cognition by : Theresa K. Lant

Download or read book Organizational Cognition written by Theresa K. Lant and published by Psychology Press. This book was released on 2000-07-01 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organizational Cognition is a collection of chapters written by scholars from around the world. The editors outline the history of two approaches to the study of cognition in organizations, the computational approach and the interpretive approach. The chapters represent some of the most cutting-edge research on organizational cognition, covering research that spans many levels of analysis. Much of the work in the book demonstrates how computational and interpretive approaches can be combined in a way that provides greater insight into cognitive processes in and among organizations. The editors conclude by elaborating the likely boundary conditions of each approach and how they can be combined for a more complete understanding of cognition in organizations.

Systems Engineering in the Fourth Industrial Revolution

Download Systems Engineering in the Fourth Industrial Revolution PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119513944
Total Pages : 660 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Systems Engineering in the Fourth Industrial Revolution by : Ron S. Kenett

Download or read book Systems Engineering in the Fourth Industrial Revolution written by Ron S. Kenett and published by John Wiley & Sons. This book was released on 2019-12-10 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date guide for using massive amounts of data and novel technologies to design, build, and maintain better systems engineering Systems Engineering in the Fourth Industrial Revolution: Big Data, Novel Technologies, and Modern Systems Engineering offers a guide to the recent changes in systems engineering prompted by the current challenging and innovative industrial environment called the Fourth Industrial Revolution—INDUSTRY 4.0. This book contains advanced models, innovative practices, and state-of-the-art research findings on systems engineering. The contributors, an international panel of experts on the topic, explore the key elements in systems engineering that have shifted towards data collection and analytics, available and used in the design and development of systems and also in the later life-cycle stages of use and retirement. The contributors address the issues in a system in which the system involves data in its operation, contrasting with earlier approaches in which data, models, and algorithms were less involved in the function of the system. The book covers a wide range of topics including five systems engineering domains: systems engineering and systems thinking; systems software and process engineering; the digital factory; reliability and maintainability modeling and analytics; and organizational aspects of systems engineering. This important resource: Presents new and advanced approaches, methodologies, and tools for designing, testing, deploying, and maintaining advanced complex systems Explores effective evidence-based risk management practices Describes an integrated approach to safety, reliability, and cyber security based on system theory Discusses entrepreneurship as a multidisciplinary system Emphasizes technical merits of systems engineering concepts by providing technical models Written for systems engineers, Systems Engineering in the Fourth Industrial Revolution offers an up-to-date resource that contains the best practices and most recent research on the topic of systems engineering.

Calculus of Thought

Download Calculus of Thought PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0124104525
Total Pages : 295 pages
Book Rating : 4.1/5 (241 download)

DOWNLOAD NOW!


Book Synopsis Calculus of Thought by : Daniel M Rice

Download or read book Calculus of Thought written by Daniel M Rice and published by Academic Press. This book was released on 2013-10-15 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Calculus of Thought: Neuromorphic Logistic Regression in Cognitive Machines is a must-read for all scientists about a very simple computation method designed to simulate big-data neural processing. This book is inspired by the Calculus Ratiocinator idea of Gottfried Leibniz, which is that machine computation should be developed to simulate human cognitive processes, thus avoiding problematic subjective bias in analytic solutions to practical and scientific problems. The reduced error logistic regression (RELR) method is proposed as such a "Calculus of Thought." This book reviews how RELR's completely automated processing may parallel important aspects of explicit and implicit learning in neural processes. It emphasizes the fact that RELR is really just a simple adjustment to already widely used logistic regression, along with RELR's new applications that go well beyond standard logistic regression in prediction and explanation. Readers will learn how RELR solves some of the most basic problems in today's big and small data related to high dimensionality, multi-colinearity, and cognitive bias in capricious outcomes commonly involving human behavior. - Provides a high-level introduction and detailed reviews of the neural, statistical and machine learning knowledge base as a foundation for a new era of smarter machines - Argues that smarter machine learning to handle both explanation and prediction without cognitive bias must have a foundation in cognitive neuroscience and must embody similar explicit and implicit learning principles that occur in the brain

Machine Learning Cookbook with Python

Download Machine Learning Cookbook with Python PDF Online Free

Author :
Publisher : BPB Publications
ISBN 13 : 9389898005
Total Pages : 319 pages
Book Rating : 4.3/5 (898 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Cookbook with Python by : Rehan Guha

Download or read book Machine Learning Cookbook with Python written by Rehan Guha and published by BPB Publications. This book was released on 2020-11-12 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Cookbook that will help you implement Machine Learning algorithms and techniques by building real-world projects Ê KEY FEATURESÊ Learn how to handle an entire Machine Learning Pipeline supported with adequate mathematics. Create Predictive Models and choose the right model for various types of Datasets. Learn the art of tuning a model to improve accuracy as per Business requirements. Get familiar with concepts related to Data Analytics with Visualization, Data Science and Machine Learning. DESCRIPTION Machine Learning does not have to be intimidating at all. This book focuses on the concepts of Machine Learning and Data Analytics with mathematical explanations and programming examples. All the codes are written in Python as it is one of the most popular programming languages used for Data Science and Machine Learning. Here I have leveraged multiple libraries like NumPy, Pandas, scikit-learn, etc. to ease our task and not reinvent the wheel. There are five projects in total, each addressing a unique problem. With the recipes in this cookbook, one will learn how to solve Machine Learning problems for real-time data and perform Data Analysis and Analytics, Classification, and beyond. The datasets used are also unique and will help one to think, understand the problem and proceed towards the goal. The book is not saturated with Mathematics, but mostly all the Mathematical concepts are covered for the important topics. Every chapter typically starts with some theory and prerequisites, and then it gradually dives into the implementation of the same concept using Python, keeping a project in the background.Ê Ê WHAT WILL YOU LEARN Understand the working of the O.S.E.M.N. framework in Data Science.Ê Get familiar with the end-to-end implementation of Machine Learning Pipeline. Learn how to implement Machine Learning algorithms and concepts using Python. Learn how to build a Predictive Model for a Business case. WHO THIS BOOK IS FORÊ This cookbook is meant for anybody who is passionate enough to get into the World of Machine Learning and has a preliminary understanding of the Basics of Linear Algebra, Calculus, Probability, and Statistics. This book also serves as a reference guidebook for intermediate Machine Learning practitioners. Ê TABLE OF CONTENTS 1. Boston Crime 2. World Happiness Report 3. Iris Species 4. Credit Card Fraud Detection 5. Heart Disease UCI

Machine Learning Using R

Download Machine Learning Using R PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484242157
Total Pages : 712 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Using R by : Karthik Ramasubramanian

Download or read book Machine Learning Using R written by Karthik Ramasubramanian and published by Apress. This book was released on 2018-12-12 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R. As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning. What You'll Learn Understand machine learning algorithms using R Master the process of building machine-learning models Cover the theoretical foundations of machine-learning algorithms See industry focused real-world use cases Tackle time series modeling in R Apply deep learning using Keras and TensorFlow in R Who This Book is For Data scientists, data science professionals, and researchers in academia who want to understand the nuances of machine-learning approaches/algorithms in practice using R.

Cognitive Computing and Big Data Analytics

Download Cognitive Computing and Big Data Analytics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118896785
Total Pages : 291 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Cognitive Computing and Big Data Analytics by : Judith S. Hurwitz

Download or read book Cognitive Computing and Big Data Analytics written by Judith S. Hurwitz and published by John Wiley & Sons. This book was released on 2015-04-08 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to learning technologies that unlock the value in big data Cognitive Computing provides detailed guidance toward building a new class of systems that learn from experience and derive insights to unlock the value of big data. This book helps technologists understand cognitive computing's underlying technologies, from knowledge representation techniques and natural language processing algorithms to dynamic learning approaches based on accumulated evidence, rather than reprogramming. Detailed case examples from the financial, healthcare, and manufacturing walk readers step-by-step through the design and testing of cognitive systems, and expert perspectives from organizations such as Cleveland Clinic, Memorial Sloan-Kettering, as well as commercial vendors that are creating solutions. These organizations provide insight into the real-world implementation of cognitive computing systems. The IBM Watson cognitive computing platform is described in a detailed chapter because of its significance in helping to define this emerging market. In addition, the book includes implementations of emerging projects from Qualcomm, Hitachi, Google and Amazon. Today's cognitive computing solutions build on established concepts from artificial intelligence, natural language processing, ontologies, and leverage advances in big data management and analytics. They foreshadow an intelligent infrastructure that enables a new generation of customer and context-aware smart applications in all industries. Cognitive Computing is a comprehensive guide to the subject, providing both the theoretical and practical guidance technologists need. Discover how cognitive computing evolved from promise to reality Learn the elements that make up a cognitive computing system Understand the groundbreaking hardware and software technologies behind cognitive computing Learn to evaluate your own application portfolio to find the best candidates for pilot projects Leverage cognitive computing capabilities to transform the organization Cognitive systems are rightly being hailed as the new era of computing. Learn how these technologies enable emerging firms to compete with entrenched giants, and forward-thinking established firms to disrupt their industries. Professionals who currently work with big data and analytics will see how cognitive computing builds on their foundation, and creates new opportunities. Cognitive Computing provides complete guidance to this new level of human-machine interaction.

Innovative Mobile and Internet Services in Ubiquitous Computing

Download Innovative Mobile and Internet Services in Ubiquitous Computing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319615424
Total Pages : 1017 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Innovative Mobile and Internet Services in Ubiquitous Computing by : Leonard Barolli

Download or read book Innovative Mobile and Internet Services in Ubiquitous Computing written by Leonard Barolli and published by Springer. This book was released on 2017-07-03 with total page 1017 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the latest research advances, new methods and development techniques, challenges and solutions from both theoretical and practical perspectives related to Ubiquitous and Pervasive Computing (UPC), with an emphasis on innovative, mobile and internet services. With the proliferation of wireless technologies and electronic devices, there is a rapidly growing interest in UPC, which makes it possible to create human-oriented computing environments in which computer chips are embedded in everyday objects and interact with the physical world. With UPC, people can go online even while moving around, thus enjoying nearly permanent access to their preferred services. Though it holds the potential to revolutionize our lives, UPC also poses a number of new research challenges. The book gathers the proceedings of the 11th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2017), held on June 28–June 30, 2017 in Torino, Italy.

Networked Digital Technologies, Part I

Download Networked Digital Technologies, Part I PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642142923
Total Pages : 599 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Networked Digital Technologies, Part I by : Filip Zavoral

Download or read book Networked Digital Technologies, Part I written by Filip Zavoral and published by Springer. This book was released on 2010-06-29 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: On behalf of the NDT 2010 conference, the Program Committee and Charles University in Prague, Czech Republic, we welcome you to the proceedings of the Second International Conference on ‘Networked Digital Technologies’ (NDT 2010). The NDT 2010 conference explored new advances in digital and Web technology applications. It brought together researchers from various areas of computer and information sciences who addressed both theoretical and applied aspects of Web technology and Internet applications. We hope that the discussions and exchange of ideas that took place will contribute to advancements in the technology in the near future. The conference received 216 papers, out of which 85 were accepted, resulting in an acceptance rate of 39%. These accepted papers are authored by researchers from 34 countries covering many significant areas of Web applications. Each paper was evaluated by a minimum of two reviewers. Finally, we believe that the proceedings document the best research in the studied areas. We express our thanks to the Charles University in Prague, Springer, the authors and the organizers of the conference.

Targeted Learning

Download Targeted Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441997822
Total Pages : 628 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Targeted Learning by : Mark J. van der Laan

Download or read book Targeted Learning written by Mark J. van der Laan and published by Springer Science & Business Media. This book was released on 2011-06-17 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies.