Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Machine Learning Applications In Subsurface Energy Resource Management
Download Machine Learning Applications In Subsurface Energy Resource Management full books in PDF, epub, and Kindle. Read online Machine Learning Applications In Subsurface Energy Resource Management ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Machine Learning Applications in Subsurface Energy Resource Management by : Srikanta Mishra
Download or read book Machine Learning Applications in Subsurface Energy Resource Management written by Srikanta Mishra and published by CRC Press. This book was released on 2022-12-27 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utilization of machine learning (ML) techniques to understand hidden patterns and build data-driven predictive models from complex multivariate datasets is rapidly increasing in many applied science and engineering disciplines, including geo-energy. Motivated by these developments, Machine Learning Applications in Subsurface Energy Resource Management presents a current snapshot of the state of the art and future outlook for ML applications to manage subsurface energy resources (e.g., oil and gas, geologic carbon sequestration, and geothermal energy). Covers ML applications across multiple application domains (reservoir characterization, drilling, production, reservoir modeling, and predictive maintenance) Offers a variety of perspectives from authors representing operating companies, universities, and research organizations Provides an array of case studies illustrating the latest applications of several ML techniques Includes a literature review and future outlook for each application domain This book is targeted at practicing petroleum engineers or geoscientists interested in developing a broad understanding of ML applications across several subsurface domains. It is also aimed as a supplementary reading for graduate-level courses and will also appeal to professionals and researchers working with hydrogeology and nuclear waste disposal.
Book Synopsis Artificial Intelligence for a More Sustainable Oil and Gas Industry and the Energy Transition by : Mohammadali Ahmadi
Download or read book Artificial Intelligence for a More Sustainable Oil and Gas Industry and the Energy Transition written by Mohammadali Ahmadi and published by Elsevier. This book was released on 2024-07-13 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence for a More Sustainable Oil and Gas Industry and the Energy Transition: Case Studies and Code Examples presents a package for academic researchers and industries working on water resources and carbon capture and storage. This book contains fundamental knowledge on artificial intelligence related to oil and gas sustainability and the industry's pivot to support the energy transition and provides practical applications through case studies and coding flowcharts, addressing gaps and questions raised by academic and industrial partners, including energy engineers, geologists, and environmental scientists. This timely publication provides fundamental and extensive information on advanced AI applications geared to support sustainability and the energy transition for the oil and gas industry. - Reviews the use and applications of AI in energy transition of the oil and gas sectors - Provides fundamental knowledge and academic background of artificial intelligence, including practical applications with real-world examples and coding flowcharts - Showcases the successful implementation of AI in the industry (including geothermal energy)
Book Synopsis Advances in Subsurface Data Analytics by : Shuvajit Bhattacharya
Download or read book Advances in Subsurface Data Analytics written by Shuvajit Bhattacharya and published by Elsevier. This book was released on 2022-05-18 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches brings together the fundamentals of popular and emerging machine learning (ML) algorithms with their applications in subsurface analysis, including geology, geophysics, petrophysics, and reservoir engineering. The book is divided into four parts: traditional ML, deep learning, physics-based ML, and new directions, with an increasing level of diversity and complexity of topics. Each chapter focuses on one ML algorithm with a detailed workflow for a specific application in geosciences. Some chapters also compare the results from an algorithm with others to better equip the readers with different strategies to implement automated workflows for subsurface analysis. Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches will help researchers in academia and professional geoscientists working on the subsurface-related problems (oil and gas, geothermal, carbon sequestration, and seismology) at different scales to understand and appreciate current trends in ML approaches, their applications, advances and limitations, and future potential in geosciences by bringing together several contributions in a single volume. - Covers fundamentals of simple machine learning and deep learning algorithms, and physics-based approaches written by practitioners in academia and industry - Presents detailed case studies of individual machine learning algorithms and optimal strategies in subsurface characterization around the world - Offers an analysis of future trends in machine learning in geosciences
Book Synopsis Applied Statistical Modeling and Data Analytics by : Srikanta Mishra
Download or read book Applied Statistical Modeling and Data Analytics written by Srikanta Mishra and published by Elsevier. This book was released on 2017-10-27 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. - Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains - Written by practitioners for practitioners - Presents an easy to follow narrative which progresses from simple concepts to more challenging ones - Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences - Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications
Book Synopsis Deep Learning Applications, Volume 2 by : M. Arif Wani
Download or read book Deep Learning Applications, Volume 2 written by M. Arif Wani and published by Springer. This book was released on 2020-12-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.
Book Synopsis Machine Learning and Artificial Intelligence in Geosciences by :
Download or read book Machine Learning and Artificial Intelligence in Geosciences written by and published by Academic Press. This book was released on 2020-09-22 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Geophysics, Volume 61 - Machine Learning and Artificial Intelligence in Geosciences, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including a historical review on the development of machine learning, machine learning to investigate fault rupture on various scales, a review on machine learning techniques to describe fractured media, signal augmentation to improve the generalization of deep neural networks, deep generator priors for Bayesian seismic inversion, as well as a review on homogenization for seismology, and more. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Presents an essential publication for researchers in all fields of geophysics
Book Synopsis Knowledge Guided Machine Learning by : Anuj Karpatne
Download or read book Knowledge Guided Machine Learning written by Anuj Karpatne and published by CRC Press. This book was released on 2022-08-15 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field. Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers. KEY FEATURES First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields Accessible to a broad audience in data science and scientific and engineering fields Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives Enables cross-pollination of KGML problem formulations and research methods across disciplines Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML
Download or read book MATLAB Deep Learning written by Phil Kim and published by Apress. This book was released on 2017-06-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.
Book Synopsis Ensemble Machine Learning by : Cha Zhang
Download or read book Ensemble Machine Learning written by Cha Zhang and published by Springer Science & Business Media. This book was released on 2012-02-17 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics. Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.
Book Synopsis Artificial Intelligent Approaches in Petroleum Geosciences by : Constantin Cranganu
Download or read book Artificial Intelligent Approaches in Petroleum Geosciences written by Constantin Cranganu and published by Springer Nature. This book was released on with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Deep Learning for Time Series Forecasting by : Jason Brownlee
Download or read book Deep Learning for Time Series Forecasting written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2018-08-30 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.
Book Synopsis Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing by : Ni-Bin Chang
Download or read book Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing written by Ni-Bin Chang and published by CRC Press. This book was released on 2018-02-21 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.
Book Synopsis Shale Analytics by : Shahab D. Mohaghegh
Download or read book Shale Analytics written by Shahab D. Mohaghegh and published by Springer. This book was released on 2017-02-09 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the application of modern information technology to reservoir modeling and well management in shale. While covering Shale Analytics, it focuses on reservoir modeling and production management of shale plays, since conventional reservoir and production modeling techniques do not perform well in this environment. Topics covered include tools for analysis, predictive modeling and optimization of production from shale in the presence of massive multi-cluster, multi-stage hydraulic fractures. Given the fact that the physics of storage and fluid flow in shale are not well-understood and well-defined, Shale Analytics avoids making simplifying assumptions and concentrates on facts (Hard Data - Field Measurements) to reach conclusions. Also discussed are important insights into understanding completion practices and re-frac candidate selection and design. The flexibility and power of the technique is demonstrated in numerous real-world situations.
Book Synopsis Stratigraphic reservoir characterization for petroleum geologists, geophysicists, and engineers by : Roger M. Slatt
Download or read book Stratigraphic reservoir characterization for petroleum geologists, geophysicists, and engineers written by Roger M. Slatt and published by Elsevier. This book was released on 2006-11-03 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reservoir characterization as a discipline grew out of the recognition that more oil and gas could be extracted from reservoirs if the geology of the reservoir was understood. Prior to that awakening, reservoir development and production were the realm of the petroleum engineer. In fact, geologists of that time would have felt slighted if asked by corporate management to move from an exciting exploration assignment to a more mundane assignment working with an engineer to improve a reservoir's performance. Slowly, reservoir characterization came into its own as a quantitative, multidisciplinary endeavor requiring a vast array of skills and knowledge sets. Perhaps the biggest attractor to becoming a reservoir geologist was the advent of fast computing, followed by visualization programs and theaters, all of which allow young geoscientists to practice their computing skills in a highly technical work environment. Also, the discipline grew in parallel with the evolution of data integration and the advent of asset teams in the petroleum industry. Finally, reservoir characterization flourished with the quantum improvements that have occurred in geophysical acquisition and processing techniques and that allow geophysicists to image internal reservoir complexities.
Book Synopsis A Matrix Algebra Approach to Artificial Intelligence by : Xian-Da Zhang
Download or read book A Matrix Algebra Approach to Artificial Intelligence written by Xian-Da Zhang and published by Springer. This book was released on 2021-05-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algebra plays an important role in many core artificial intelligence (AI) areas, including machine learning, neural networks, support vector machines (SVMs) and evolutionary computation. This book offers a comprehensive and in-depth discussion of matrix algebra theory and methods for these four core areas of AI, while also approaching AI from a theoretical matrix algebra perspective. The book consists of two parts: the first discusses the fundamentals of matrix algebra in detail, while the second focuses on the applications of matrix algebra approaches in AI. Highlighting matrix algebra in graph-based learning and embedding, network embedding, convolutional neural networks and Pareto optimization theory, and discussing recent topics and advances, the book offers a valuable resource for scientists, engineers, and graduate students in various disciplines, including, but not limited to, computer science, mathematics and engineering.
Book Synopsis Big Data Analysis: New Algorithms for a New Society by : Nathalie Japkowicz
Download or read book Big Data Analysis: New Algorithms for a New Society written by Nathalie Japkowicz and published by Springer. This book was released on 2015-12-16 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume is devoted to Big Data Analysis from a Machine Learning standpoint as presented by some of the most eminent researchers in this area. It demonstrates that Big Data Analysis opens up new research problems which were either never considered before, or were only considered within a limited range. In addition to providing methodological discussions on the principles of mining Big Data and the difference between traditional statistical data analysis and newer computing frameworks, this book presents recently developed algorithms affecting such areas as business, financial forecasting, human mobility, the Internet of Things, information networks, bioinformatics, medical systems and life science. It explores, through a number of specific examples, how the study of Big Data Analysis has evolved and how it has started and will most likely continue to affect society. While the benefits brought upon by Big Data Analysis are underlined, the book also discusses some of the warnings that have been issued concerning the potential dangers of Big Data Analysis along with its pitfalls and challenges.
Book Synopsis Stratigraphic Evolution of Foreland Basins by : Steven L. Dorobek
Download or read book Stratigraphic Evolution of Foreland Basins written by Steven L. Dorobek and published by . This book was released on 1995 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: A strong case can be made that foreland basins are where the casual links between sedimentation and tectonic events were first recognized, as evidenced by the interpretations of geologists working in classic foreland areas. This Special Publication was derived from a Research Symposium entitled "Stratigraphic Sequences in Foreland Basins" held at the AAPG-SEPM joint annual meeting on June, 1992, in Calgary, Alberta, Canada. This volume provides a well-balanced perspective of current research on foreland basin stratigraphy and also serves as another element in the evolving framework that comprises our understanding of foreland basins. Given that so many of earth's resources are found in foreland basins and that foreland basin strata often provide the only preserved record of the tectonic events that led to basin development, the impetus for continued studies of foreland basin strata should remain for many generations of geologists to come.