Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Linear Operators In Hilbert Space
Download Linear Operators In Hilbert Space full books in PDF, epub, and Kindle. Read online Linear Operators In Hilbert Space ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Linear Operators in Hilbert Spaces by : Joachim Weidmann
Download or read book Linear Operators in Hilbert Spaces written by Joachim Weidmann and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: This English edition is almost identical to the German original Lineare Operatoren in Hilbertriiumen, published by B. G. Teubner, Stuttgart in 1976. A few proofs have been simplified, some additional exercises have been included, and a small number of new results has been added (e.g., Theorem 11.11 and Theorem 11.23). In addition a great number of minor errors has been corrected. Frankfurt, January 1980 J. Weidmann vii Preface to the German edition The purpose of this book is to give an introduction to the theory of linear operators on Hilbert spaces and then to proceed to the interesting applica tions of differential operators to mathematical physics. Besides the usual introductory courses common to both mathematicians and physicists, only a fundamental knowledge of complex analysis and of ordinary differential equations is assumed. The most important results of Lebesgue integration theory, to the extent that they are used in this book, are compiled with complete proofs in Appendix A. I hope therefore that students from the fourth semester on will be able to read this book without major difficulty. However, it might also be of some interest and use to the teaching and research mathematician or physicist, since among other things it makes easily accessible several new results of the spectral theory of differential operators.
Book Synopsis Operators on Hilbert Space by : V. S. Sunder
Download or read book Operators on Hilbert Space written by V. S. Sunder and published by Springer. This book was released on 2016-08-05 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primarily objective of the book is to serve as a primer on the theory of bounded linear operators on separable Hilbert space. The book presents the spectral theorem as a statement on the existence of a unique continuous and measurable functional calculus. It discusses a proof without digressing into a course on the Gelfand theory of commutative Banach algebras. The book also introduces the reader to the basic facts concerning the various von Neumann–Schatten ideals, the compact operators, the trace-class operators and all bounded operators.
Book Synopsis Elements of Hilbert Spaces and Operator Theory by : Harkrishan Lal Vasudeva
Download or read book Elements of Hilbert Spaces and Operator Theory written by Harkrishan Lal Vasudeva and published by Springer. This book was released on 2017-03-27 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.
Book Synopsis Invitation to Linear Operators by : Takayuki Furuta
Download or read book Invitation to Linear Operators written by Takayuki Furuta and published by CRC Press. This book was released on 2001-07-26 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most books on linear operators are not easy to follow for students and researchers without an extensive background in mathematics. Self-contained and using only matrix theory, Invitation to Linear Operators: From Matricies to Bounded Linear Operators on a Hilbert Space explains in easy-to-follow steps a variety of interesting recent results on linear operators on a Hilbert space. The author first states the important properties of a Hilbert space, then sets out the fundamental properties of bounded linear operators on a Hilbert space. The final section presents some of the more recent developments in bounded linear operators.
Book Synopsis Perturbation theory for linear operators by : Tosio Kato
Download or read book Perturbation theory for linear operators written by Tosio Kato and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Spectral Theory of Bounded Linear Operators by : Carlos S. Kubrusly
Download or read book Spectral Theory of Bounded Linear Operators written by Carlos S. Kubrusly and published by Springer Nature. This book was released on 2020-01-30 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces spectral theory for bounded linear operators by focusing on (i) the spectral theory and functional calculus for normal operators acting on Hilbert spaces; (ii) the Riesz-Dunford functional calculus for Banach-space operators; and (iii) the Fredholm theory in both Banach and Hilbert spaces. Detailed proofs of all theorems are included and presented with precision and clarity, especially for the spectral theorems, allowing students to thoroughly familiarize themselves with all the important concepts. Covering both basic and more advanced material, the five chapters and two appendices of this volume provide a modern treatment on spectral theory. Topics range from spectral results on the Banach algebra of bounded linear operators acting on Banach spaces to functional calculus for Hilbert and Banach-space operators, including Fredholm and multiplicity theories. Supplementary propositions and further notes are included as well, ensuring a wide range of topics in spectral theory are covered. Spectral Theory of Bounded Linear Operators is ideal for graduate students in mathematics, and will also appeal to a wider audience of statisticians, engineers, and physicists. Though it is mostly self-contained, a familiarity with functional analysis, especially operator theory, will be helpful.
Book Synopsis Spectral Theory of Self-Adjoint Operators in Hilbert Space by : Michael Sh. Birman
Download or read book Spectral Theory of Self-Adjoint Operators in Hilbert Space written by Michael Sh. Birman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: It isn't that they can't see the solution. It is Approach your problems from the right end that they can't see the problem. and begin with the answers. Then one day, perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be com pletely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order" , which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Book Synopsis Linear Operators for Quantum Mechanics by : Thomas F. Jordan
Download or read book Linear Operators for Quantum Mechanics written by Thomas F. Jordan and published by Courier Corporation. This book was released on 2012-09-20 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduates and graduate students, this compact treatment examines linear space, functionals, and operators; diagonalizing operators; operator algebras; and equations of motion. 1969 edition.
Book Synopsis Introduction to the Theory of Linear Nonselfadjoint Operators by : Israel Gohberg
Download or read book Introduction to the Theory of Linear Nonselfadjoint Operators written by Israel Gohberg and published by American Mathematical Soc.. This book was released on 1978 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Traces and Determinants of Linear Operators by : Israel Gohberg
Download or read book Traces and Determinants of Linear Operators written by Israel Gohberg and published by Birkhäuser. This book was released on 2012-12-06 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to a theory of traces and determinants on embedded algebras of linear operators, where the trace and determinant are extended from finite rank operators by a limit process. The self-contained material should appeal to a wide group of mathematicians and engineers, and is suitable for teaching.
Book Synopsis Linear Operator Theory in Engineering and Science by : Arch W. Naylor
Download or read book Linear Operator Theory in Engineering and Science written by Arch W. Naylor and published by Springer Science & Business Media. This book was released on 1982 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a unique introduction to the theory of linear operators on Hilbert space. The authors' goal is to present the basic facts of functional analysis in a form suitable for engineers, scientists, and applied mathematicians. Although the Definition-Theorem-Proof format of mathematics is used, careful attention is given to motivation of the material covered and many illustrative examples are presented. First published in 1971, Linear Operator in Engineering and Sciences has since proved to be a popular and very useful textbook.
Book Synopsis History of Banach Spaces and Linear Operators by : Albrecht Pietsch
Download or read book History of Banach Spaces and Linear Operators written by Albrecht Pietsch and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 877 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a distinguished specialist in functional analysis, this book presents a comprehensive treatment of the history of Banach spaces and (abstract bounded) linear operators. Banach space theory is presented as a part of a broad mathematics context, using tools from such areas as set theory, topology, algebra, combinatorics, probability theory, logic, etc. Equal emphasis is given to both spaces and operators. The book may serve as a reference for researchers and as an introduction for graduate students who want to learn Banach space theory with some historical flavor.
Book Synopsis Unbounded Linear Operators by : Seymour Goldberg
Download or read book Unbounded Linear Operators written by Seymour Goldberg and published by Courier Corporation. This book was released on 2006-01-01 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a systematic treatment of the theory of unbounded linear operators in normed linear spaces with applications to differential equations. Largely self-contained, it is suitable for advanced undergraduates and graduate students, and it only requires a familiarity with metric spaces and real variable theory. After introducing the elementary theory of normed linear spaces--particularly Hilbert space, which is used throughout the book--the author develops the basic theory of unbounded linear operators with normed linear spaces assumed complete, employing operators assumed closed only when needed. Other topics include strictly singular operators; operators with closed range; perturbation theory, including some of the main theorems that are later applied to ordinary differential operators; and the Dirichlet operator, in which the author outlines the interplay between functional analysis and "hard" classical analysis in the study of elliptic partial differential equations. In addition to its readable style, this book's appeal includes numerous examples and motivations for certain definitions and proofs. Moreover, it employs simple notation, eliminating the need to refer to a list of symbols.
Book Synopsis Introduction to Spectral Theory in Hilbert Space by : Gilbert Helmberg
Download or read book Introduction to Spectral Theory in Hilbert Space written by Gilbert Helmberg and published by Elsevier. This book was released on 2014-11-28 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: North-Holland Series in Applied Mathematics and Mechanics, Volume 6: Introduction to Spectral Theory in Hilbert Space focuses on the mechanics, principles, and approaches involved in spectral theory in Hilbert space. The publication first elaborates on the concept and specific geometry of Hilbert space and bounded linear operators. Discussions focus on projection and adjoint operators, bilinear forms, bounded linear mappings, isomorphisms, orthogonal subspaces, base, subspaces, finite dimensional Euclidean space, and normed linear spaces. The text then takes a look at the general theory of linear operators and spectral analysis of compact linear operators, including spectral decomposition of a compact selfadjoint operator, weakly convergent sequences, spectrum of a compact linear operator, and eigenvalues of a linear operator. The manuscript ponders on the spectral analysis of bounded linear operators and unbounded selfadjoint operators. Topics include spectral decomposition of an unbounded selfadjoint operator and bounded normal operator, functions of a unitary operator, step functions of a bounded selfadjoint operator, polynomials in a bounded operator, and order relation for bounded selfadjoint operators. The publication is a valuable source of data for mathematicians and researchers interested in spectral theory in Hilbert space.
Book Synopsis Factorization of Linear Operators and Geometry of Banach Spaces by : Gilles Pisier
Download or read book Factorization of Linear Operators and Geometry of Banach Spaces written by Gilles Pisier and published by American Mathematical Soc.. This book was released on 1986 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Expository lectures from the CBMS regional conference held at the University of Missouri-Columbia, June 25-29, 1984"--T.p. verso.
Book Synopsis An Introduction to Hilbert Space by : N. Young
Download or read book An Introduction to Hilbert Space written by N. Young and published by Cambridge University Press. This book was released on 1988-07-21 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.
Book Synopsis Basic Operator Theory by : Israel Gohberg
Download or read book Basic Operator Theory written by Israel Gohberg and published by Birkhäuser. This book was released on 2013-12-01 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: rii application of linear operators on a Hilbert space. We begin with a chapter on the geometry of Hilbert space and then proceed to the spectral theory of compact self adjoint operators; operational calculus is next presented as a nat ural outgrowth of the spectral theory. The second part of the text concentrates on Banach spaces and linear operators acting on these spaces. It includes, for example, the three 'basic principles of linear analysis and the Riesz Fredholm theory of compact operators. Both parts contain plenty of applications. All chapters deal exclusively with linear problems, except for the last chapter which is an introduction to the theory of nonlinear operators. In addition to the standard topics in functional anal ysis, we have presented relatively recent results which appear, for example, in Chapter VII. In general, in writ ing this book, the authors were strongly influenced by re cent developments in operator theory which affected the choice of topics, proofs and exercises. One of the main features of this book is the large number of new exercises chosen to expand the reader's com prehension of the material, and to train him or her in the use of it. In the beginning portion of the book we offer a large selection of computational exercises; later, the proportion of exercises dealing with theoretical questions increases. We have, however, omitted exercises after Chap ters V, VII and XII due to the specialized nature of the subject matter.