Lectures on Closed Geodesics

Download Lectures on Closed Geodesics PDF Online Free

Author :
Publisher :
ISBN 13 : 9783642618826
Total Pages : 248 pages
Book Rating : 4.6/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Closed Geodesics by : W Klingenberg

Download or read book Lectures on Closed Geodesics written by W Klingenberg and published by . This book was released on 1978-01-01 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Riemannian Geometry in an Orthogonal Frame

Download Riemannian Geometry in an Orthogonal Frame PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810247478
Total Pages : 284 pages
Book Rating : 4.2/5 (474 download)

DOWNLOAD NOW!


Book Synopsis Riemannian Geometry in an Orthogonal Frame by : Elie Cartan

Download or read book Riemannian Geometry in an Orthogonal Frame written by Elie Cartan and published by World Scientific. This book was released on 2001 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elie Cartan's book Geometry of Riemannian Manifolds (1928) was one of the best introductions to his methods. It was based on lectures given by the author at the Sorbonne in the academic year 1925-26. A modernized and extensively augmented edition appeared in 1946 (2nd printing, 1951, and 3rd printing, 1988). Cartan's lectures in 1926-27 were different -- he introduced exterior forms at the very beginning and used extensively orthonormal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. The lectures were translated into Russian in the book Riemannian Geometry in an Orthogonal Frame (1960). This book has many innovations, such as the notion of intrinsic normal differentiation and the Gaussian torsion of a submanifold in a Euclidean multidimensional space or in a space of constant curvature, an affine connection defined in a normal fiber bundle of a submanifold, etc. The only book of Elie Cartan that was not available in English, it has now been translated into English by Vladislav V Goldberg, the editor of the Russian edition.

An Introduction to Riemannian Geometry

Download An Introduction to Riemannian Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319086669
Total Pages : 476 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Riemannian Geometry by : Leonor Godinho

Download or read book An Introduction to Riemannian Geometry written by Leonor Godinho and published by Springer. This book was released on 2014-07-26 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Riemannian Manifolds

Download Riemannian Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387227261
Total Pages : 232 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Riemannian Manifolds by : John M. Lee

Download or read book Riemannian Manifolds written by John M. Lee and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

Lectures On Differential Geometry

Download Lectures On Differential Geometry PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9813102985
Total Pages : 368 pages
Book Rating : 4.8/5 (131 download)

DOWNLOAD NOW!


Book Synopsis Lectures On Differential Geometry by : Weihuan Chen

Download or read book Lectures On Differential Geometry written by Weihuan Chen and published by World Scientific Publishing Company. This book was released on 1999-11-30 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a translation of an authoritative introductory text based on a lecture series delivered by the renowned differential geometer, Professor S S Chern in Beijing University in 1980. The original Chinese text, authored by Professor Chern and Professor Wei-Huan Chen, was a unique contribution to the mathematics literature, combining simplicity and economy of approach with depth of contents. The present translation is aimed at a wide audience, including (but not limited to) advanced undergraduate and graduate students in mathematics, as well as physicists interested in the diverse applications of differential geometry to physics. In addition to a thorough treatment of the fundamentals of manifold theory, exterior algebra, the exterior calculus, connections on fiber bundles, Riemannian geometry, Lie groups and moving frames, and complex manifolds (with a succinct introduction to the theory of Chern classes), and an appendix on the relationship between differential geometry and theoretical physics, this book includes a new chapter on Finsler geometry and a new appendix on the history and recent developments of differential geometry, the latter prepared specially for this edition by Professor Chern to bring the text into perspectives.

Lectures On Finsler Geometry

Download Lectures On Finsler Geometry PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814491659
Total Pages : 323 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Lectures On Finsler Geometry by : Zhongmin Shen

Download or read book Lectures On Finsler Geometry written by Zhongmin Shen and published by World Scientific. This book was released on 2001-05-22 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1854, B Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P Finsler studied the variation problem in regular metric spaces. Around 1926, L Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world.Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory.

On the Hypotheses Which Lie at the Bases of Geometry

Download On the Hypotheses Which Lie at the Bases of Geometry PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319260421
Total Pages : 181 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis On the Hypotheses Which Lie at the Bases of Geometry by : Bernhard Riemann

Download or read book On the Hypotheses Which Lie at the Bases of Geometry written by Bernhard Riemann and published by Birkhäuser. This book was released on 2016-04-19 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.

Lectures on Symplectic Geometry

Download Lectures on Symplectic Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 354045330X
Total Pages : 240 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Symplectic Geometry by : Ana Cannas da Silva

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Lectures on Closed Geodesics

Download Lectures on Closed Geodesics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642618812
Total Pages : 238 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Closed Geodesics by : W. Klingenberg

Download or read book Lectures on Closed Geodesics written by W. Klingenberg and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: The question of existence of c10sed geodesics on a Riemannian manifold and the properties of the corresponding periodic orbits in the geodesic flow has been the object of intensive investigations since the beginning of global differential geo metry during the last century. The simplest case occurs for c10sed surfaces of negative curvature. Here, the fundamental group is very large and, as shown by Hadamard [Had] in 1898, every non-null homotopic c10sed curve can be deformed into a c10sed curve having minimallength in its free homotopy c1ass. This minimal curve is, up to the parameterization, uniquely determined and represents a c10sed geodesic. The question of existence of a c10sed geodesic on a simply connected c10sed surface is much more difficult. As pointed out by Poincare [po 1] in 1905, this problem has much in common with the problem ofthe existence of periodic orbits in the restricted three body problem. Poincare [l.c.] outlined a proof that on an analytic convex surface which does not differ too much from the standard sphere there always exists at least one c10sed geodesic of elliptic type, i. e., the corres ponding periodic orbit in the geodesic flow is infinitesimally stable.

Introduction to Differential Geometry

Download Introduction to Differential Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3662643405
Total Pages : 426 pages
Book Rating : 4.6/5 (626 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Differential Geometry by : Joel W. Robbin

Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Lectures on Geodesics in Riemannian Geometry

Download Lectures on Geodesics in Riemannian Geometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 684 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Geodesics in Riemannian Geometry by : Marcel Berger

Download or read book Lectures on Geodesics in Riemannian Geometry written by Marcel Berger and published by . This book was released on 1965 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Lectures on the Geometry of Manifolds

Download Lectures on the Geometry of Manifolds PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812708537
Total Pages : 606 pages
Book Rating : 4.8/5 (127 download)

DOWNLOAD NOW!


Book Synopsis Lectures on the Geometry of Manifolds by : Liviu I. Nicolaescu

Download or read book Lectures on the Geometry of Manifolds written by Liviu I. Nicolaescu and published by World Scientific. This book was released on 2007 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that ?in learning the sciences examples are of more use than precepts?. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a ?global and analytical bias?. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincar‚ duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-;Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand H”lder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.

Lectures on Spaces of Nonpositive Curvature

Download Lectures on Spaces of Nonpositive Curvature PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034892403
Total Pages : 114 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Spaces of Nonpositive Curvature by : Werner Ballmann

Download or read book Lectures on Spaces of Nonpositive Curvature written by Werner Ballmann and published by Birkhäuser. This book was released on 2012-12-06 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.

Sub-Riemannian Geometry and Optimal Transport

Download Sub-Riemannian Geometry and Optimal Transport PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 331904804X
Total Pages : 146 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Sub-Riemannian Geometry and Optimal Transport by : Ludovic Rifford

Download or read book Sub-Riemannian Geometry and Optimal Transport written by Ludovic Rifford and published by Springer Science & Business Media. This book was released on 2014-04-03 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to sub-Riemannian geometry and optimal transport and presents some of the recent progress in these two fields. The text is completely self-contained: the linear discussion, containing all the proofs of the stated results, leads the reader step by step from the notion of distribution at the very beginning to the existence of optimal transport maps for Lipschitz sub-Riemannian structure. The combination of geometry presented from an analytic point of view and of optimal transport, makes the book interesting for a very large community. This set of notes grew from a series of lectures given by the author during a CIMPA school in Beirut, Lebanon.

Introduction to Differential Geometry and Riemannian Geometry

Download Introduction to Differential Geometry and Riemannian Geometry PDF Online Free

Author :
Publisher : University of Toronto Press
ISBN 13 : 1487591055
Total Pages : 446 pages
Book Rating : 4.4/5 (875 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Differential Geometry and Riemannian Geometry by : Erwin Kreyszig

Download or read book Introduction to Differential Geometry and Riemannian Geometry written by Erwin Kreyszig and published by University of Toronto Press. This book was released on 1968-12-15 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the differential geometry of curves and surfaces in three-dimensional Euclidean space and to n-dimensional Riemannian geometry. Based on Kreyszig's earlier book Differential Geometry, it is presented in a simple and understandable manner with many examples illustrating the ideas, methods, and results. Among the topics covered are vector and tensor algebra, the theory of surfaces, the formulae of Weingarten and Gauss, geodesics, mappings of surfaces and their applications, and global problems. A thorough investigation of Reimannian manifolds is made, including the theory of hypersurfaces. Interesting problems are provided and complete solutions are given at the end of the book together with a list of the more important formulae. Elementary calculus is the sole prerequisite for the understanding of this detailed and complete study in mathematics.

A Tour of Subriemannian Geometries, Their Geodesics and Applications

Download A Tour of Subriemannian Geometries, Their Geodesics and Applications PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821841653
Total Pages : 282 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Tour of Subriemannian Geometries, Their Geodesics and Applications by : Richard Montgomery

Download or read book A Tour of Subriemannian Geometries, Their Geodesics and Applications written by Richard Montgomery and published by American Mathematical Soc.. This book was released on 2002 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subriemannian geometries can be viewed as limits of Riemannian geometries. They arise naturally in many areas of pure (algebra, geometry, analysis) and applied (mechanics, control theory, mathematical physics) mathematics, as well as in applications (e.g., robotics). This book is devoted to the study of subriemannian geometries, their geodesics, and their applications. It starts with the simplest nontrivial example of a subriemannian geometry: the two-dimensional isoperimetric problem reformulated as a problem of finding subriemannian geodesics. Among topics discussed in other chapters of the first part of the book are an elementary exposition of Gromov's idea to use subriemannian geometry for proving a theorem in discrete group theory and Cartan's method of equivalence applied to the problem of understanding invariants of distributions. The second part of the book is devoted to applications of subriemannian geometry. In particular, the author describes in detail Berry's phase in quantum mechanics, the problem of a falling cat righting herself, that of a microorganism swimming, and a phase problem arising in the $N$-body problem. He shows that all these problems can be studied using the same underlying type of subriemannian geometry. The reader is assumed to have an introductory knowledge of differential geometry. This book that also has a chapter devoted to open problems can serve as a good introduction to this new, exciting area of mathematics.

Geometry VI

Download Geometry VI PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540411086
Total Pages : 536 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Geometry VI by : M.M. Postnikov

Download or read book Geometry VI written by M.M. Postnikov and published by Springer Science & Business Media. This book was released on 2001-03-13 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats that part of Riemannian geometry related to more classical topics in a very original, clear and solid style. The author successfully combines the co-ordinate and invariant approaches to differential geometry, giving the reader tools for practical calculations as well as a theoretical understanding of the subject.