Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Lectures On Convex Sets Second Edition
Download Lectures On Convex Sets Second Edition full books in PDF, epub, and Kindle. Read online Lectures On Convex Sets Second Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Lectures On Convex Sets (Second Edition) by : Valeriu Soltan
Download or read book Lectures On Convex Sets (Second Edition) written by Valeriu Soltan and published by World Scientific. This book was released on 2019-11-28 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a self-contained and systematic treatment of algebraic and topological properties of convex sets in the n-dimensional Euclidean space. It benefits advanced undergraduate and graduate students with various majors in mathematics, optimization, and operations research. It may be adapted as a primary book or an additional text for any course in convex geometry or convex analysis, aimed at non-geometers. It can be a source for independent study and a reference book for researchers in academia.The second edition essentially extends and revises the original book. Every chapter is rewritten, with many new theorems, examples, problems, and bibliographical references included. It contains three new chapters and 100 additional problems with solutions.
Book Synopsis Convex Optimization by : Stephen P. Boyd
Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Book Synopsis Lectures on Discrete Geometry by : Jiri Matousek
Download or read book Lectures on Discrete Geometry written by Jiri Matousek and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.
Book Synopsis Lectures on Convex Optimization by : Yurii Nesterov
Download or read book Lectures on Convex Optimization written by Yurii Nesterov and published by Springer. This book was released on 2018-11-19 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.
Book Synopsis Lectures on Modern Convex Optimization by : Aharon Ben-Tal
Download or read book Lectures on Modern Convex Optimization written by Aharon Ben-Tal and published by SIAM. This book was released on 2001-01-01 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.
Book Synopsis Ten Lectures on the Probabilistic Method by : Joel Spencer
Download or read book Ten Lectures on the Probabilistic Method written by Joel Spencer and published by SIAM. This book was released on 1994-01-01 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: This update of the 1987 title of the same name is an examination of what is currently known about the probabilistic method, written by one of its principal developers. Based on the notes from Spencer's 1986 series of ten lectures, this new edition contains an additional lecture: The Janson inequalities. These inequalities allow accurate approximation of extremely small probabilities. A new algorithmic approach to the Lovasz Local Lemma, attributed to Jozsef Beck, has been added to Lecture 8, as well. Throughout the monograph, Spencer retains the informal style of his original lecture notes and emphasizes the methodology, shunning the more technical "best possible" results in favor of clearer exposition. The book is not encyclopedic--it contains only those examples that clearly display the methodology. The probabilistic method is a powerful tool in graph theory, combinatorics, and theoretical computer science. It allows one to prove the existence of objects with certain properties (e.g., colorings) by showing that an appropriately defined random object has positive probability of having those properties.
Book Synopsis Lectures on Choquet's Theorem by : Robert Ralph Phelps
Download or read book Lectures on Choquet's Theorem written by Robert Ralph Phelps and published by . This book was released on 1966 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Appearing for the first time in book form are the main results centered about Choquet's integral representation theorem-an important recent chapter in functional analysis. This theorem has applications to analysis, probability, potential theory, and functional analysis; it will doubtless have further applications as it becomes better known. This readable book presupposes a knowledge of integration theory and elementary functional analysis, including the Krein-Milman theorem and the Riesz representation theorem. --Back cover.
Book Synopsis Convex Optimization Theory by : Dimitri Bertsekas
Download or read book Convex Optimization Theory written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2009-06-01 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).
Book Synopsis An Easy Path to Convex Analysis and Applications by : Boris S. Mordukhovich
Download or read book An Easy Path to Convex Analysis and Applications written by Boris S. Mordukhovich and published by Morgan & Claypool Publishers. This book was released on 2013-12-01 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical f
Book Synopsis Lectures on Polytopes by : Günter M. Ziegler
Download or read book Lectures on Polytopes written by Günter M. Ziegler and published by Springer. This book was released on 2012-05-03 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.
Book Synopsis Handbook of Discrete and Computational Geometry, Second Edition by : Csaba D. Toth
Download or read book Handbook of Discrete and Computational Geometry, Second Edition written by Csaba D. Toth and published by CRC Press. This book was released on 2004-04-13 with total page 1557 pages. Available in PDF, EPUB and Kindle. Book excerpt: While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies
Book Synopsis Lecture Notes in Microeconomic Theory by : Ariel Rubinstein
Download or read book Lecture Notes in Microeconomic Theory written by Ariel Rubinstein and published by Princeton University Press. This book was released on 2012-03-04 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ariel Rubinstein's well-known lecture notes on microeconomics—now fully revised and expanded This book presents Ariel Rubinstein's lecture notes for the first part of his well-known graduate course in microeconomics. Developed during the fifteen years that Rubinstein taught the course at Tel Aviv University, Princeton University, and New York University, these notes provide a critical assessment of models of rational economic agents, and are an invaluable supplement to any primary textbook in microeconomic theory. In this fully revised and expanded second edition, Rubinstein retains the striking originality and deep simplicity that characterize his famously engaging style of teaching. He presents these lecture notes with a precision that gets to the core of the material, and he places special emphasis on the interpretation of key concepts. Rubinstein brings this concise book thoroughly up to date, covering topics like modern choice theory and including dozens of original new problems. Written by one of the world's most respected and provocative economic theorists, this second edition of Lecture Notes in Microeconomic Theory is essential reading for students, teachers, and research economists. Fully revised, expanded, and updated Retains the engaging style and method of Rubinstein's well-known lectures Covers topics like modern choice theory Features numerous original new problems—including 21 new review problems Solutions manual (available only to teachers) can be found at: http://gametheory.tau.ac.il/microTheory/.
Book Synopsis Convex Analysis and Global Optimization by : Hoang Tuy
Download or read book Convex Analysis and Global Optimization written by Hoang Tuy and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development. Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization.
Book Synopsis Convexity and Concentration by : Eric Carlen
Download or read book Convexity and Concentration written by Eric Carlen and published by Springer. This book was released on 2017-04-20 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents some of the research topics discussed at the 2014-2015 Annual Thematic Program Discrete Structures: Analysis and Applications at the Institute of Mathematics and its Applications during the Spring 2015 where geometric analysis, convex geometry and concentration phenomena were the focus. Leading experts have written surveys of research problems, making state of the art results more conveniently and widely available. The volume is organized into two parts. Part I contains those contributions that focus primarily on problems motivated by probability theory, while Part II contains those contributions that focus primarily on problems motivated by convex geometry and geometric analysis. This book will be of use to those who research convex geometry, geometric analysis and probability directly or apply such methods in other fields.
Book Synopsis Convex Functions by : Jonathan M. Borwein
Download or read book Convex Functions written by Jonathan M. Borwein and published by Cambridge University Press. This book was released on 2010-01-14 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: The product of a collaboration of over 15 years, this volume is unique because it focuses on convex functions themselves, rather than on convex analysis. The authors explore the various classes and their characteristics, treating convex functions in both Euclidean and Banach spaces.
Book Synopsis Convex Analysis and Optimization by : Dimitri Bertsekas
Download or read book Convex Analysis and Optimization written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2003-03-01 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization. The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997). Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including: 1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems. 2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization. 3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions. Among its features the book: a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html
Book Synopsis Convexity from the Geometric Point of View by : Vitor Balestro
Download or read book Convexity from the Geometric Point of View written by Vitor Balestro and published by Springer Nature. This book was released on with total page 1195 pages. Available in PDF, EPUB and Kindle. Book excerpt: