Author : Ye Yuan
Publisher : Springer Nature
ISBN 13 : 9811967032
Total Pages : 99 pages
Book Rating : 4.8/5 (119 download)
Book Synopsis Latent Factor Analysis for High-dimensional and Sparse Matrices by : Ye Yuan
Download or read book Latent Factor Analysis for High-dimensional and Sparse Matrices written by Ye Yuan and published by Springer Nature. This book was released on 2022-11-15 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question. This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications. The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.