Laser Diode Beam Basics, Manipulations and Characterizations

Download Laser Diode Beam Basics, Manipulations and Characterizations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400746644
Total Pages : 76 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Laser Diode Beam Basics, Manipulations and Characterizations by : Haiyin Sun

Download or read book Laser Diode Beam Basics, Manipulations and Characterizations written by Haiyin Sun and published by Springer Science & Business Media. This book was released on 2012-06-16 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many optical design technical books are available for many years which mainly deal with image optics design based on geometric optics and using sequential raytracing technique. Some books slightly touched laser beam manipulation optics design. On the other hand many books on laser diodes have been published that extensively deal with laser diode physics with little touching on laser diode beam manipulations and characterizations. There are some internet resources dealing with laser diode beams. However, these internet resources have not covered enough materials with enough details on laser diode beam manipulations and characterizations. A technical book concentrated on laser diode beam manipulations and characterizations can fit in to the open and provide useful information to laser diode users. Laser Diode Beam Basics, Manipulations and Characterizations is concentrated on the very practical side of the subject, it only discusses the basic physics and mathematics that are necessary for the readers in order to understand the subject. This book is intended to provide a practical guidance and reference to those scientists and engineers who are still new to laser diode applications, and to those undergraduate and graduate students who are studying lasers and optics. Readers are expected to be able to fast and easily find the most practical and useful information about laser diodes in this book without the need of searching through a sea of information.

A Practical Guide to Handling Laser Diode Beams

Download A Practical Guide to Handling Laser Diode Beams PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9401797838
Total Pages : 136 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis A Practical Guide to Handling Laser Diode Beams by : Haiyin Sun

Download or read book A Practical Guide to Handling Laser Diode Beams written by Haiyin Sun and published by Springer. This book was released on 2015-02-20 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers the reader a practical guide to the control and characterization of laser diode beams. Laser diodes are the most widely used lasers, accounting for 50% of the global laser market. Correct handling of laser diode beams is the key to the successful use of laser diodes, and this requires an in-depth understanding of their unique properties. Following a short introduction to the working principles of laser diodes, the book describes the basics of laser diode beams and beam propagation, including Zemax modeling of a Gaussian beam propagating through a lens. The core of the book is concerned with laser diode beam manipulations: collimating and focusing, circularization and astigmatism correction, coupling into a single mode optical fiber, diffractive optics and beam shaping, and manipulation of multi transverse mode beams. The final chapter of the book covers beam characterization methods, describing the measurement of spatial and spectral properties, including wavelength and linewidth measurement techniques. The book is a significantly revised and expanded version of the title Laser Diode Beam Basics, Manipulations and Characterizations by the same author. New topics introduced in this volume include: laser diode types and working principles, non-paraxial Gaussian beam, Zemax modeling, numerical analysis of a laser diode beam, spectral property characterization methods, and power and energy characterization techniques. The book approaches the subject in a practical way with mathematical content kept to the minimum level required, making the book a convenient reference for laser diode users.

Packaging of High Power Semiconductor Lasers

Download Packaging of High Power Semiconductor Lasers PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1461492637
Total Pages : 402 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Packaging of High Power Semiconductor Lasers by : Xingsheng Liu

Download or read book Packaging of High Power Semiconductor Lasers written by Xingsheng Liu and published by Springer. This book was released on 2014-07-14 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces high power semiconductor laser packaging design. The challenges of the design and various packaging and testing techniques are detailed by the authors. New technologies and current applications are described in detail.

Advances in Neural Networks

Download Advances in Neural Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319337475
Total Pages : 539 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Advances in Neural Networks by : Simone Bassis

Download or read book Advances in Neural Networks written by Simone Bassis and published by Springer. This book was released on 2016-06-18 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: This carefully edited book is putting emphasis on computational and artificial intelligent methods for learning and their relative applications in robotics, embedded systems, and ICT interfaces for psychological and neurological diseases. The book is a follow-up of the scientific workshop on Neural Networks (WIRN 2015) held in Vietri sul Mare, Italy, from the 20th to the 22nd of May 2015. The workshop, at its 27th edition became a traditional scientific event that brought together scientists from many countries, and several scientific disciplines. Each chapter is an extended version of the original contribution presented at the workshop, and together with the reviewers’ peer revisions it also benefits from the live discussion during the presentation. The content of book is organized in the following sections. 1. Introduction, 2. Machine Learning, 3. Artificial Neural Networks: Algorithms and models, 4. Intelligent Cyberphysical and Embedded System, 5. Computational Intelligence Methods for Biomedical ICT in Neurological Diseases, 6. Neural Networks-Based Approaches to Industrial Processes, 7. Reconfigurable Modular Adaptive Smart Robotic Systems for Optoelectronics Industry: The White'R Instantiation This book is unique in proposing a holistic and multidisciplinary approach to implement autonomous, and complex Human Computer Interfaces.

Fiber-Optic Sensors for Biomedical Applications

Download Fiber-Optic Sensors for Biomedical Applications PDF Online Free

Author :
Publisher : Artech House
ISBN 13 : 1630814954
Total Pages : 330 pages
Book Rating : 4.6/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Fiber-Optic Sensors for Biomedical Applications by : Daniele Tosi

Download or read book Fiber-Optic Sensors for Biomedical Applications written by Daniele Tosi and published by Artech House. This book was released on 2017-12-31 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative new resource presents fiber optic sensors and their applications in medical device design and biomedical engineering. Readers gain an understanding of which technology to use and adopt, and how to connect technologies with their respective applications. This book explores the innovation of diagnostics and how to use diagnostic tools. Principles of fiber optic sensing are covered and include details about intensity-based sensors, fiber bragg gratings, distributed sensors, and fabry-perot interferometers. This book explores interrogation software, standards for medical sensors, and discusses protocols and tools for validation. Various medical device engineering and applications are examined, including sensor catheterization, cardiovascular sensors, diagnostic in gastroscopy, urology, neurology, sensing in thermal ablation. Applications and detection of SPR sensors are presented, along with minimally invasive robotic surgery, smart textiles, wearable sensors and fiber-optic spectrometric sensors. This is a one-stop reference on fiber optic sensors for biomed applications.

Handbook of Defence Electronics and Optronics

Download Handbook of Defence Electronics and Optronics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111918472X
Total Pages : 1152 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Defence Electronics and Optronics by : Anil K. Maini

Download or read book Handbook of Defence Electronics and Optronics written by Anil K. Maini and published by John Wiley & Sons. This book was released on 2018-03-26 with total page 1152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Defence Electronics and Optronics Anil K. Maini, Former Director, Laser Science and Technology Centre, India First complete reference on defence electronics and optronics Fundamentals, Technologies and Systems This book provides a complete account of defence electronics and optronics. The content is broadly divided into three categories: topics specific to defence electronics; topics relevant to defence optronics; and topics that have both electronics and optronics counterparts. The book covers each of the topics in their entirety from fundamentals to advanced concepts, military systems in use and related technologies, thereby leading the reader logically from the operational basics of military systems to involved technologies and battlefield deployment and applications. Key features: • Covers fundamentals, operational aspects, involved technologies and application potential of a large cross-section of military systems. Discusses emerging technology trends and development and deployment status of next generation military systems wherever applicable in each category of military systems. • Amply illustrated with approximately 1000 diagrams and photographs and around 30 tables. • Includes salient features, technologies and deployment aspects of hundreds of military systems, including: military radios; ground and surveillance radars; laser range finder and target designators; night visions devices; EW and EO jammers; laser guided munitions; and military communications equipment and satellites. Handbook of Defence Electronics and Optronics is an essential guide for graduate students, R&D scientists, engineers engaged in manufacturing defence equipment and professionals handling the operation and maintenance of these systems in the Armed Forces.

Lasers and Optoelectronics

Download Lasers and Optoelectronics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118688961
Total Pages : 600 pages
Book Rating : 4.1/5 (186 download)

DOWNLOAD NOW!


Book Synopsis Lasers and Optoelectronics by : Anil K. Maini

Download or read book Lasers and Optoelectronics written by Anil K. Maini and published by John Wiley & Sons. This book was released on 2013-08-05 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: With emphasis on the physical and engineering principles, thisbook provides a comprehensive and highly accessible treatment ofmodern lasers and optoelectronics. Divided into four parts, itexplains laser fundamentals, types of lasers, laser electronics& optoelectronics, and laser applications, covering each of thetopics in their entirety, from basic fundamentals to advancedconcepts. Key features include: exploration of technological and application-related aspects oflasers and optoelectronics, detailing both existing and emergingapplications in industry, medical diagnostics and therapeutics,scientific studies and Defence. simple explanation of the concepts and essential information onelectronics and circuitry related to laser systems illustration of numerous solved and unsolved problems,practical examples, chapter summaries, self-evaluation exercises,and a comprehensive list of references for furtherreading This volume is a valuable design guide for R&D engineers andscientists engaged in design and development of lasers andoptoelectronics systems, and technicians in their operation andmaintenance. The tutorial approach serves as a useful reference forunder-graduate and graduate students of lasers and optoelectronics,also PhD students in electronics, optoelectronics and physics.

Semiconductor Laser Engineering, Reliability and Diagnostics

Download Semiconductor Laser Engineering, Reliability and Diagnostics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119990335
Total Pages : 522 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Semiconductor Laser Engineering, Reliability and Diagnostics by : Peter W. Epperlein

Download or read book Semiconductor Laser Engineering, Reliability and Diagnostics written by Peter W. Epperlein and published by John Wiley & Sons. This book was released on 2013-03-18 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students. Dr. Peter W. Epperlein is Technology Consultant with his own semiconductor technology consulting business Pwe-PhotonicsElectronics-IssueResolution in the UK. He looks back at a thirty years career in cutting edge photonics and electronics industries with focus on emerging technologies, both in global and start-up companies, including IBM, Hewlett-Packard, Agilent Technologies, Philips/NXP, Essient Photonics and IBM/JDSU Laser Enterprise. He holds Pre-Dipl. (B.Sc.), Dipl. Phys. (M.Sc.) and Dr. rer. nat. (Ph.D.) degrees in physics, magna cum laude, from the University of Stuttgart, Germany. Dr. Epperlein is an internationally recognized expert in compound semiconductor and diode laser technologies. He has accomplished R&D in many device areas such as semiconductor lasers, LEDs, optical modulators, quantum well devices, resonant tunneling devices, FETs, and superconducting tunnel junctions and integrated circuits. His pioneering work on sophisticated diagnostic research has led to many world’s first reports and has been adopted by other researchers in academia and industry. He authored more than seventy peer-reviewed journal papers, published more than ten invention disclosures in the IBM Technical Disclosure Bulletin, has served as reviewer of numerous proposals for publication in technical journals, and has won five IBM Research Division Awards. His key achievements include the design and fabrication of high-power, highly reliable, single mode diode lasers. Book Reviews “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland The book “Semiconductor Laser Engineering, Reliability and Diagnostics” by Dr. P.W. Epperlein is a landmark in the recent literature on semiconductor lasers because it fills a longstanding gap between many excellent books on laser theory and the complex and challenging endeavor to fabricate these devices reproducibly and reliably in an industrial, real world environment. Having worked myself in the early research and development of high power semiconductor lasers, I appreciate the competent, complete and skillful presentation of these three highly interrelated topics, where small effects have dramatic consequences on the success of a final product, on the ultimate performance and on the stringent reliability requirements, which are the name of the game. As the title suggests the author addresses three tightly interwoven and critical topics of state-of-the-art power laser research. The three parts are: device and mode stability engineering (chapter 1, 2), reliability mechanisms and reliability assessment strategies (chapter 3, 4, 5, 6) and finally material and device diagnostics (chapter 7, 8, 9) all treated with a strong focus on the implementation. This emphasis on the complex practical aspects for a large-scale power laser fabrication is a true highlight of the book. The subtle interplay between laser design, reliability strategies, advanced failure analysis and characterization techniques are elaborated in a very rigorous and scientific way using a very clear and easy to read representation of the complex interrelation of the three major topics. I will abstain from trying to provide a complete account of all the topics but mainly concentrate on the numerous highlights. The first part 1 “Laser Engineering” is divided in two chapters on basic electronic-optical, structural, material and resonator laser engineering on the one side, and on single mode control and stability at very high, still reliable power-levels with the trade-off between mirror damage, single mode stability on the other side. To round up the picture less well-known concepts and the state-of-the-art of large-area lasers, which can be forced into single-mode operation, are reviewed carefully. The subtle and complex interplay, which is challenging to optimize for a design for reliability and low stress as a major boundary condition is crucial for the design. The section gives a rather complete and well-referenced account of all relevant aspects, relations and trade-offs for understanding the rest of the book. The completeness of the presentation on power laser diode design based on basic physical and plausible arguments is mainly based on analytic mathematical relations as well as experiments providing a new and well-balanced addition for the power diode laser literature in particular. Modern 2D self-consistent electro-optical laser modeling including carrier hole burning and thermal effects – this is important because the weak optical guiding and gain-discrimination depend critically on rather small quantities and effects, which are difficult to optimize experimentally – is used in the book for simulation results, but is not treated separately. The novel and really original, “gap-filling” bulk of the book is elaborated by the author in a very clear way in the following four chapters in the part 2 “Laser Reliability” on laser degradation physics and mirror design and passivation at high power, followed then by two very application oriented chapters on reliability design engineering and practical reliability strategies and implementation procedures. This original combination of integral design and reliability aspects – which are mostly neglected in standard literature – is certainly a major plus of this book. I liked this second section as a whole, because it provides excellent insights in degradation physics on a high level and combines it in an interesting and skillful way with the less “glamorous” (unfortunately) but highly relevant reliability science and testing strategies, which is particularly important for devices operating at extreme optical stresses with challenging lifetime requirements in a real word environment. Finally, the last part 3 “Laser Diagnostics” comprising three chapters, is devoted mainly to advanced experimental diagnostics techniques for material integrity, mechanical stress, deep level defects, various dynamic laser degradation effects, surface- and interface quality, and most importantly heating and disordering of mirrors and mirror coatings. The topics of characterization techniques comprising micro-Raman- and micro-thermoreflectance-probing, 2K photoluminescence spectroscopy, micro-electroluminescence and photoluminescence scanning, and deep-level-transient spectroscopy have been pioneered by the author for the specific applications over many years guaranteeing many competent and well represented insights. These techniques are brilliantly discussed and the information distributed in many articles by the author has been successfully unified in a book form. In my personal judgment and liking, I consider the parts 2 and 3 on reliability and diagnostics as the most valuable and true novel contribution of the book, which in combination with the extremely well-covered laser design of part 1 clearly fill the gap in the current diode laser literature, which in this detail has certainly been neglected in the past. In summary, I can highly recommend this excellent, well-organized and clearly written book to readers who are already familiar with basic diode laser theory and who are active in the academic and industrial fabrication and characterization of semiconductor lasers. Due to its completeness, it also serves as an excellent reference of the current state-of-the-art in reliability engineering and device and material diagnostics. Needless to mention that the quality of the book, its representations and methodical structure meet the highest expectation and are certainly a tribute from the long and broad experience of the author in academic laser science and the industrial commercialization of high power diode lasers. In my opinion, this book was a pleasure to read and due to its quality and relevance deserves a large audience in the power diode laser community! Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland June 16, 2013 ========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Dr. Chung-en Zah, Research Director, Semiconductor Technologies Research, S&T Division, Corning Incorporate, Corning NY, USA This book covers for the first time the three closely interrelated key laser areas of engineering (design), reliability and diagnostics in one book, written by the well-known practitioner in cutting-edge optoelectronics industries, Dr. Peter W. Epperlein. The book closes the gap in the current book literature and is thus a unique and excellent example of how to merge design, reliability and diagnostics aspects in a very professional, profound and complete manner. All physical and technological principles, concepts and practical aspects required for developing and fabricating highly-reliable high-power single-mode laser products are precisely specified and skilfully formulated along with all the necessary equations, figures, tables and worked-out examples making it easy to follow through the nine chapters. Hence, this unique book is a milestone in the diode laser literature and is an excellent reference book not only for diode laser researchers and engineers, but also diode laser users. The engineering part starts with a very informative and clear, well-presented account of all necessary basic diode laser types, principles, parameters and characteristics for an easy and quick understanding of laser functionality within the context of the book. Along with an elaborate and broad discussion of relevant laser material systems, applications, typical output powers, power-limiting factors and reliability tradeoffs, basic fabrication and packaging technologies, this excellent introductory section is well suited to become quickly and easily familiar with practical aspects and issues of diode laser technologies. Of special importance and high usefulness is the first analytic and quantitative discussion in a book on issues of coupling laser power into optical single mode fibers. The second section discusses in a well-balanced, competent and skilful way waveguide topics such as basic high-power design approaches, transverse vertical and lateral waveguide concepts, stability of the fundamental transverse lateral mode and fundamental mode waveguide optimization techniques by considering detrimental effects such as heating, carrier injection, spatial hole burning, lateral current spreading and gain profile variations. Less well-known approaches to force large-area lasers into a single mode operation are well-identified and carefully discussed in depth and breadth. All these topics are elaborated in a very complete, rigorous and scientific way and are clearly articulated and easy to read. In particular, the book works out the complex interaction between the many different effects to optimize high-power single-mode performance at ultimate reliability and thus is of great benefit to every researcher and engineer engaged in this diode laser field. Another novelty and highlight is, for the first time ever in book form, a comprehensive yet concise discussion of diode laser reliability related issues. These are elaborated in four distinct chapters comprising laser degradation physics and modes, optical strength enhancement approaches including mirror passivation/coating and non-absorbing mirror technologies, followed by two highly relevant product-oriented chapters on reliability design engineering concepts and techniques and an elaborate reliability test plan for laser chip and module product qualification. This original and novel approach to link laser design to reliability aspects and requirements provides both, most useful insight into degradation processes such as catastrophic optical mirror damage on a microscopic scale, and a wide selection of effective remedial actions. These accounts, which are of highest significance for lasers operating at the optical stress limit due to extremely high output power densities and most demanding lifetime requirements are very professionally prepared and discussed in an interesting, coherent and skilful manner. The diagnostics part, consisting of three very elaborate chapters, is most unique and novel with respect to other diode laser books. It discusses for the first time ever on a very high level and in a competent way studies on material integrity, impurity trapping effects, mirror and cavity temperatures, surface- and interface quality, mirror facet disorder effects, mechanical stress and facet coating instability, and diverse laser temperature effects, dynamic laser degradation effects and mirror temperature maps. Of highest significance to design, performance and reliability are the various correlations established between laser device and material parameters. The most different and sophisticated experiments, carried out by the author at micrometer spatial resolutions and at temperatures as low as 2K, provide highly valuable insights into laser and material quality parameters, and reveal for the first time the origins of high power limitations on an atomic scale due to local heating effects and deep level defects. It is of great benefit, that the experimental techniques such as Raman spectroscopy, various luminescence techniques, thermoreflectance and deep-level transient spectroscopy, pioneered by the author for the specific experiments on lasers, are discussed with great expertise in depth and breadth, and the numerous paper articles published by the author are now represented in this book. The book has an elaborate table of contents and index, which are very useful, over 200 illustrative figures and tables, and extensive lists of references to all technical topics at the end of each of the nine chapters, which make it easy to follow from cover to cover or by jumping in at random areas of special interest. Moreover, experimental and theoretical concepts are always illustrated by practical examples and data. I can highly recommend this extremely relevant, well-structured and well-formulated book to all practising researchers in industrial and academic diode laser R&D environments and to post-graduate engineering students interested in the actual problems of designing, manufacturing, testing, characterising and qualifying diode lasers. Due to its completeness and novel approach to combine design, reliability and diagnostics in the same book, it can serve as an ideal reference book as well, and it deserves to be welcomed wordwide by the addressed audience. Dr. Chung-en Zah, Research Director, Semiconductor Technologies Research, S&T Division, Corning Incorporate, Corning NY, USA =========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Cordinatore Prof. Lorenzo Pavesi, UNIVERSITÀ DEGLI STUDI DI TRENTO, Dipartimento di Fisica / Laboratorio di Nanoscienze This book represents a well thought description of three fundamental aspects of laser technology: the functioning principles, the reliability and the diagnostics. From this point of view, and, as far as I know, this is a unique example of a book where all these aspects are merged together resulting in a well-balanced presentation. This helps the reader to move with ease between different concepts since they are presented in a coherent manner and with the same terminology, symbols and definitions. The book reads well. Despite the subtitle indicates that it is a practical approach, the book is also correct from a formal point of view and presents the necessary equations and derivations to understand both the physical mechanisms and the practicalities via a set of useful formulas. In addition, there is the more important aspect of many real-life examples of how a laser is actually manufactured and which the relevant parameters that determine its behaviour are. It impresses the amounts of information that are given in the book: this would be more typical of a thick handbook on semiconductor laser than of an agile book. Dr. Epperlein was able to identify the most important concepts and to present them in a clear though concise way. I am teaching a course on Optoelectronics and I'm going to advise students to refer to this book, because it has all the necessary concepts and derivations for a systematic understanding of semiconductor lasers with many worked-out examples, which will help the student to grasp the actual problems of designing, manufacturing, testing and using semiconductor lasers. All the various concepts are joined to very useful figures, which, if provided to instructors as files, can be a useful add-on for the use of the book as text for teaching. Concepts are always detailed with numbers to give a feeling of their practical use. In conclusion, I do find the book suitable for my teaching duties and will refer it to my students. Prof. Dr. Lorenzo Pavesi, Head of the Department of Physics, Head of the Nanoscience Laboratory, University of Trento, Italy 31 May 2013 =========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Robert W. Herrick, Ph.D., Senior Component Reliability Engineer, Intel Corp., Santa Clara, California, USA Dr. Epperlein has done the semiconductor laser community a great service, by releasing the most complete book on the market on the practical issues of how to make reliable semiconductor lasers. While dozens of books have been written over the past couple of decades on semiconductor laser design, only a handful have been written on semiconductor laser reliability. Prior to the release of this book, perhaps 40% of the material could be obtained elsewhere by combining five books: one on laser design, one on laser reliability, one on reliability calculations, and a couple of laser review books. Another 40% could be pieced together by collecting 50 -100 papers on the subjects of laser design, laser fabrication, characterization, and reliability. The remaining 20% have not previously been covered in any comprehensive way. Only the introductory material in the first half of the first chapter has good coverage elsewhere. The large majority of the knowledge in this book is generally held as “trade secret” by those with the expertise in the field, and most of those in the know are not free to discuss. The author was fortunate enough to work for the first half of his career in the IBM research labs, with access to unparalleled resources, and the ability to publish his work without trade secret restrictions. The results are still at the cutting edge of our understanding of semiconductor laser reliability today, and go well beyond the empirical “black box” approach many use of “try everything, and see what works.” The author did a fine job of pulling together material from many disparate fields. Dr. Epperlein has particular expertise in high power single mode semiconductor lasers, and those working on those type of lasers will be especially interested in this book, as there has never been a book published on the fabrication and qualification of such lasers before. But those in almost any field of semiconductor lasers will learn items of interest about device design, fabrication, reliability, and characterization. Unlike most other books, which intend to convey the scientific findings or past work of the author, this one is written more as a “how to” manual, which should make it more accessible and useful to development engineers and researchers in the field. It also has over 200 figures, which make it easier to follow. As with many books of this type, it is not necessary to read it from cover-to-cover; it is best skimmed, with deep diving into any areas of special interest to the reader. The book is remarkable also for how comprehensive it is – even experts will discover something new and useful. Dr. Epperlein’s book is an essential read for anyone looking to develop semiconductor lasers for anything other than pure research use, and I give it my highest recommendation. Robert W. Herrick, Ph.D., Senior Component Reliability Engineer, Intel Corp., Santa Clara, California, USA

Wind Energy Explained

Download Wind Energy Explained PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470686287
Total Pages : 704 pages
Book Rating : 4.6/5 (862 download)

DOWNLOAD NOW!


Book Synopsis Wind Energy Explained by : James F. Manwell

Download or read book Wind Energy Explained written by James F. Manwell and published by John Wiley & Sons. This book was released on 2010-09-14 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy’s bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. “provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy.” (IEEE Power & Energy Magazine, November/December 2003) “deserves a place in the library of every university and college where renewable energy is taught.” (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) “a very comprehensive and well-organized treatment of the current status of wind power.” (Choice, Vol. 40, No. 4, December 2002)

Introduction to Optics

Download Introduction to Optics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108597548
Total Pages : 660 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Optics by : Frank L. Pedrotti

Download or read book Introduction to Optics written by Frank L. Pedrotti and published by Cambridge University Press. This book was released on 2017-12-21 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Optics is now available in a re-issued edition from Cambridge University Press. Designed to offer a comprehensive and engaging introduction to intermediate and upper level undergraduate physics and engineering students, this text also allows instructors to select specialized content to suit individual curricular needs and goals. Specific features of the text, in terms of coverage beyond traditional areas, include extensive use of matrices in dealing with ray tracing, polarization, and multiple thin-film interference; three chapters devoted to lasers; a separate chapter on the optics of the eye; and individual chapters on holography, coherence, fiber optics, interferometry, Fourier optics, nonlinear optics, and Fresnel equations.

Introduction to Quantum Optics

Download Introduction to Quantum Optics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139490842
Total Pages : pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Quantum Optics by : Gilbert Grynberg

Download or read book Introduction to Quantum Optics written by Gilbert Grynberg and published by Cambridge University Press. This book was released on 2010-09-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering a number of important subjects in quantum optics, this textbook is an excellent introduction for advanced undergraduate and beginning graduate students, familiarizing readers with the basic concepts and formalism as well as the most recent advances. The first part of the textbook covers the semi-classical approach where matter is quantized, but light is not. It describes significant phenomena in quantum optics, including the principles of lasers. The second part is devoted to the full quantum description of light and its interaction with matter, covering topics such as spontaneous emission, and classical and non-classical states of light. An overview of photon entanglement and applications to quantum information is also given. In the third part, non-linear optics and laser cooling of atoms are presented, where using both approaches allows for a comprehensive description. Each chapter describes basic concepts in detail, and more specific concepts and phenomena are presented in 'complements'.

Femtosecond Optical Frequency Comb: Principle, Operation and Applications

Download Femtosecond Optical Frequency Comb: Principle, Operation and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387237917
Total Pages : 373 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Femtosecond Optical Frequency Comb: Principle, Operation and Applications by : Jun Ye

Download or read book Femtosecond Optical Frequency Comb: Principle, Operation and Applications written by Jun Ye and published by Springer Science & Business Media. This book was released on 2006-06-15 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few years, there has been a convergence between the fields of ultrafast science, nonlinear optics, optical frequency metrology, and precision laser spectroscopy. These fields have been developing largely independently since the birth of the laser, reaching remarkable levels of performance. On the ultrafast frontier, pulses of only a few cycles long have been produced, while in optical spectroscopy, the precision and resolution have reached one part in Although these two achievements appear to be completely disconnected, advances in nonlinear optics provided the essential link between them. The resulting convergence has enabled unprecedented advances in the control of the electric field of the pulses produced by femtosecond mode-locked lasers. The corresponding spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as “femtosecond comb technology. ” They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. The historical background for these developments is provided in the Foreword by two of the pioneers of laser spectroscopy, John Hall and Theodor Hänsch. Indeed the developments described in this book were foreshadowed by Hänsch’s early work in the 1970s when he used picosecond pulses to demonstrate the connection between the time and frequency domains in laser spectroscopy. This work complemented the advances in precision laser stabilization developed by Hall.

Medical Applications of Lasers

Download Medical Applications of Lasers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461509297
Total Pages : 381 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Medical Applications of Lasers by : D.R. Vij

Download or read book Medical Applications of Lasers written by D.R. Vij and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A careful review of the literature covering various aspects of applications of lasers in science and technology reveals that lasers are being applied very widely throughout the entire gamut of physical medicine. After surveying the current developments taking place in the field of medical applications of lasers, it was considered appropriate to bring together these efforts of international research scientists and experts into one volume. It is with this aim that the editors have prepared this volume which brings current research and recent developments to the attention of a wide spectrum of readership associated with hospitals, medical institutions and universities world wide, including also the medical instrument industry. Both teachers and students in the medical faculties will especially find this compendium quite useful. This book is comprised of eleven chapters. All of the important medical applications of lasers are featured. The editors have made every effort that individual chapters are self-contained and written by experts. Emphasis has been placed on straight and simple presentation of the subject matter so that even the new entrants into the field will find the book of value.

Transmission Electron Microscopy

Download Transmission Electron Microscopy PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319266519
Total Pages : 518 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Transmission Electron Microscopy by : C. Barry Carter

Download or read book Transmission Electron Microscopy written by C. Barry Carter and published by Springer. This book was released on 2016-08-24 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.

Lasers and Non-Linear Optics

Download Lasers and Non-Linear Optics PDF Online Free

Author :
Publisher : Wiley
ISBN 13 : 9780470217313
Total Pages : 262 pages
Book Rating : 4.2/5 (173 download)

DOWNLOAD NOW!


Book Synopsis Lasers and Non-Linear Optics by : B. B. Laud

Download or read book Lasers and Non-Linear Optics written by B. B. Laud and published by Wiley. This book was released on 1992-04-16 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition encompasses the wide area joining laser physics and non-linear optics. It gives a concise account of basic physics, optical processes and a quantum mechanical treatment of the interaction of radiation with matter preparing the way for the formal development of laser. Original experiments are described in detail to give an understanding of the physical principles of laser devices. Extensively referenced.

Lens Design

Download Lens Design PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351722247
Total Pages : 399 pages
Book Rating : 4.3/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Lens Design by : Haiyin Sun

Download or read book Lens Design written by Haiyin Sun and published by CRC Press. This book was released on 2016-12-19 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Practical Guide to Lens Design focuses on the very detailed practical process of lens design. Every step from setup specifications to finalizing the design for production is discussed in a straight forward, tangible way. Design examples of several widely used modern lenses are provided. Optics basics are introduced and basic functions of Zemax are described. Zemax will be used throughout the book.

Feedback Systems

Download Feedback Systems PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 069121347X
Total Pages : pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Feedback Systems by : Karl Johan Åström

Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory