Laser Heterodyning

Download Laser Heterodyning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 364202338X
Total Pages : 361 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Laser Heterodyning by : Vladimir V. Protopopov

Download or read book Laser Heterodyning written by Vladimir V. Protopopov and published by Springer. This book was released on 2009-09-18 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser heterodyning is now a widespread optical technique, based on interference of two waves with slightly different frequencies within the sensitive area of a photo-detector. Its unique feature – preserving phase information about optical wave in the electrical signal of the photo-detector – finds numerous applications in various domains of applied optics and optoelectronics: in spectroscopy, polarimetry, radiometry, laser radars and lidars, microscopy and other areas. The reader may be surprised by the variety of disciplines that this book covers and satisfied by detailed explanation of the phenomena. Very well illustrated, this book will be helpful for researches, postgraduates and students, working in applied optics.

Semiconductor Laser Engineering, Reliability and Diagnostics

Download Semiconductor Laser Engineering, Reliability and Diagnostics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119990335
Total Pages : 522 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Semiconductor Laser Engineering, Reliability and Diagnostics by : Peter W. Epperlein

Download or read book Semiconductor Laser Engineering, Reliability and Diagnostics written by Peter W. Epperlein and published by John Wiley & Sons. This book was released on 2013-03-18 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students. Dr. Peter W. Epperlein is Technology Consultant with his own semiconductor technology consulting business Pwe-PhotonicsElectronics-IssueResolution in the UK. He looks back at a thirty years career in cutting edge photonics and electronics industries with focus on emerging technologies, both in global and start-up companies, including IBM, Hewlett-Packard, Agilent Technologies, Philips/NXP, Essient Photonics and IBM/JDSU Laser Enterprise. He holds Pre-Dipl. (B.Sc.), Dipl. Phys. (M.Sc.) and Dr. rer. nat. (Ph.D.) degrees in physics, magna cum laude, from the University of Stuttgart, Germany. Dr. Epperlein is an internationally recognized expert in compound semiconductor and diode laser technologies. He has accomplished R&D in many device areas such as semiconductor lasers, LEDs, optical modulators, quantum well devices, resonant tunneling devices, FETs, and superconducting tunnel junctions and integrated circuits. His pioneering work on sophisticated diagnostic research has led to many world’s first reports and has been adopted by other researchers in academia and industry. He authored more than seventy peer-reviewed journal papers, published more than ten invention disclosures in the IBM Technical Disclosure Bulletin, has served as reviewer of numerous proposals for publication in technical journals, and has won five IBM Research Division Awards. His key achievements include the design and fabrication of high-power, highly reliable, single mode diode lasers. Book Reviews “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland The book “Semiconductor Laser Engineering, Reliability and Diagnostics” by Dr. P.W. Epperlein is a landmark in the recent literature on semiconductor lasers because it fills a longstanding gap between many excellent books on laser theory and the complex and challenging endeavor to fabricate these devices reproducibly and reliably in an industrial, real world environment. Having worked myself in the early research and development of high power semiconductor lasers, I appreciate the competent, complete and skillful presentation of these three highly interrelated topics, where small effects have dramatic consequences on the success of a final product, on the ultimate performance and on the stringent reliability requirements, which are the name of the game. As the title suggests the author addresses three tightly interwoven and critical topics of state-of-the-art power laser research. The three parts are: device and mode stability engineering (chapter 1, 2), reliability mechanisms and reliability assessment strategies (chapter 3, 4, 5, 6) and finally material and device diagnostics (chapter 7, 8, 9) all treated with a strong focus on the implementation. This emphasis on the complex practical aspects for a large-scale power laser fabrication is a true highlight of the book. The subtle interplay between laser design, reliability strategies, advanced failure analysis and characterization techniques are elaborated in a very rigorous and scientific way using a very clear and easy to read representation of the complex interrelation of the three major topics. I will abstain from trying to provide a complete account of all the topics but mainly concentrate on the numerous highlights. The first part 1 “Laser Engineering” is divided in two chapters on basic electronic-optical, structural, material and resonator laser engineering on the one side, and on single mode control and stability at very high, still reliable power-levels with the trade-off between mirror damage, single mode stability on the other side. To round up the picture less well-known concepts and the state-of-the-art of large-area lasers, which can be forced into single-mode operation, are reviewed carefully. The subtle and complex interplay, which is challenging to optimize for a design for reliability and low stress as a major boundary condition is crucial for the design. The section gives a rather complete and well-referenced account of all relevant aspects, relations and trade-offs for understanding the rest of the book. The completeness of the presentation on power laser diode design based on basic physical and plausible arguments is mainly based on analytic mathematical relations as well as experiments providing a new and well-balanced addition for the power diode laser literature in particular. Modern 2D self-consistent electro-optical laser modeling including carrier hole burning and thermal effects – this is important because the weak optical guiding and gain-discrimination depend critically on rather small quantities and effects, which are difficult to optimize experimentally – is used in the book for simulation results, but is not treated separately. The novel and really original, “gap-filling” bulk of the book is elaborated by the author in a very clear way in the following four chapters in the part 2 “Laser Reliability” on laser degradation physics and mirror design and passivation at high power, followed then by two very application oriented chapters on reliability design engineering and practical reliability strategies and implementation procedures. This original combination of integral design and reliability aspects – which are mostly neglected in standard literature – is certainly a major plus of this book. I liked this second section as a whole, because it provides excellent insights in degradation physics on a high level and combines it in an interesting and skillful way with the less “glamorous” (unfortunately) but highly relevant reliability science and testing strategies, which is particularly important for devices operating at extreme optical stresses with challenging lifetime requirements in a real word environment. Finally, the last part 3 “Laser Diagnostics” comprising three chapters, is devoted mainly to advanced experimental diagnostics techniques for material integrity, mechanical stress, deep level defects, various dynamic laser degradation effects, surface- and interface quality, and most importantly heating and disordering of mirrors and mirror coatings. The topics of characterization techniques comprising micro-Raman- and micro-thermoreflectance-probing, 2K photoluminescence spectroscopy, micro-electroluminescence and photoluminescence scanning, and deep-level-transient spectroscopy have been pioneered by the author for the specific applications over many years guaranteeing many competent and well represented insights. These techniques are brilliantly discussed and the information distributed in many articles by the author has been successfully unified in a book form. In my personal judgment and liking, I consider the parts 2 and 3 on reliability and diagnostics as the most valuable and true novel contribution of the book, which in combination with the extremely well-covered laser design of part 1 clearly fill the gap in the current diode laser literature, which in this detail has certainly been neglected in the past. In summary, I can highly recommend this excellent, well-organized and clearly written book to readers who are already familiar with basic diode laser theory and who are active in the academic and industrial fabrication and characterization of semiconductor lasers. Due to its completeness, it also serves as an excellent reference of the current state-of-the-art in reliability engineering and device and material diagnostics. Needless to mention that the quality of the book, its representations and methodical structure meet the highest expectation and are certainly a tribute from the long and broad experience of the author in academic laser science and the industrial commercialization of high power diode lasers. In my opinion, this book was a pleasure to read and due to its quality and relevance deserves a large audience in the power diode laser community! Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland June 16, 2013 ========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Dr. Chung-en Zah, Research Director, Semiconductor Technologies Research, S&T Division, Corning Incorporate, Corning NY, USA This book covers for the first time the three closely interrelated key laser areas of engineering (design), reliability and diagnostics in one book, written by the well-known practitioner in cutting-edge optoelectronics industries, Dr. Peter W. Epperlein. The book closes the gap in the current book literature and is thus a unique and excellent example of how to merge design, reliability and diagnostics aspects in a very professional, profound and complete manner. All physical and technological principles, concepts and practical aspects required for developing and fabricating highly-reliable high-power single-mode laser products are precisely specified and skilfully formulated along with all the necessary equations, figures, tables and worked-out examples making it easy to follow through the nine chapters. Hence, this unique book is a milestone in the diode laser literature and is an excellent reference book not only for diode laser researchers and engineers, but also diode laser users. The engineering part starts with a very informative and clear, well-presented account of all necessary basic diode laser types, principles, parameters and characteristics for an easy and quick understanding of laser functionality within the context of the book. Along with an elaborate and broad discussion of relevant laser material systems, applications, typical output powers, power-limiting factors and reliability tradeoffs, basic fabrication and packaging technologies, this excellent introductory section is well suited to become quickly and easily familiar with practical aspects and issues of diode laser technologies. Of special importance and high usefulness is the first analytic and quantitative discussion in a book on issues of coupling laser power into optical single mode fibers. The second section discusses in a well-balanced, competent and skilful way waveguide topics such as basic high-power design approaches, transverse vertical and lateral waveguide concepts, stability of the fundamental transverse lateral mode and fundamental mode waveguide optimization techniques by considering detrimental effects such as heating, carrier injection, spatial hole burning, lateral current spreading and gain profile variations. Less well-known approaches to force large-area lasers into a single mode operation are well-identified and carefully discussed in depth and breadth. All these topics are elaborated in a very complete, rigorous and scientific way and are clearly articulated and easy to read. In particular, the book works out the complex interaction between the many different effects to optimize high-power single-mode performance at ultimate reliability and thus is of great benefit to every researcher and engineer engaged in this diode laser field. Another novelty and highlight is, for the first time ever in book form, a comprehensive yet concise discussion of diode laser reliability related issues. These are elaborated in four distinct chapters comprising laser degradation physics and modes, optical strength enhancement approaches including mirror passivation/coating and non-absorbing mirror technologies, followed by two highly relevant product-oriented chapters on reliability design engineering concepts and techniques and an elaborate reliability test plan for laser chip and module product qualification. This original and novel approach to link laser design to reliability aspects and requirements provides both, most useful insight into degradation processes such as catastrophic optical mirror damage on a microscopic scale, and a wide selection of effective remedial actions. These accounts, which are of highest significance for lasers operating at the optical stress limit due to extremely high output power densities and most demanding lifetime requirements are very professionally prepared and discussed in an interesting, coherent and skilful manner. The diagnostics part, consisting of three very elaborate chapters, is most unique and novel with respect to other diode laser books. It discusses for the first time ever on a very high level and in a competent way studies on material integrity, impurity trapping effects, mirror and cavity temperatures, surface- and interface quality, mirror facet disorder effects, mechanical stress and facet coating instability, and diverse laser temperature effects, dynamic laser degradation effects and mirror temperature maps. Of highest significance to design, performance and reliability are the various correlations established between laser device and material parameters. The most different and sophisticated experiments, carried out by the author at micrometer spatial resolutions and at temperatures as low as 2K, provide highly valuable insights into laser and material quality parameters, and reveal for the first time the origins of high power limitations on an atomic scale due to local heating effects and deep level defects. It is of great benefit, that the experimental techniques such as Raman spectroscopy, various luminescence techniques, thermoreflectance and deep-level transient spectroscopy, pioneered by the author for the specific experiments on lasers, are discussed with great expertise in depth and breadth, and the numerous paper articles published by the author are now represented in this book. The book has an elaborate table of contents and index, which are very useful, over 200 illustrative figures and tables, and extensive lists of references to all technical topics at the end of each of the nine chapters, which make it easy to follow from cover to cover or by jumping in at random areas of special interest. Moreover, experimental and theoretical concepts are always illustrated by practical examples and data. I can highly recommend this extremely relevant, well-structured and well-formulated book to all practising researchers in industrial and academic diode laser R&D environments and to post-graduate engineering students interested in the actual problems of designing, manufacturing, testing, characterising and qualifying diode lasers. Due to its completeness and novel approach to combine design, reliability and diagnostics in the same book, it can serve as an ideal reference book as well, and it deserves to be welcomed wordwide by the addressed audience. Dr. Chung-en Zah, Research Director, Semiconductor Technologies Research, S&T Division, Corning Incorporate, Corning NY, USA =========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Cordinatore Prof. Lorenzo Pavesi, UNIVERSITÀ DEGLI STUDI DI TRENTO, Dipartimento di Fisica / Laboratorio di Nanoscienze This book represents a well thought description of three fundamental aspects of laser technology: the functioning principles, the reliability and the diagnostics. From this point of view, and, as far as I know, this is a unique example of a book where all these aspects are merged together resulting in a well-balanced presentation. This helps the reader to move with ease between different concepts since they are presented in a coherent manner and with the same terminology, symbols and definitions. The book reads well. Despite the subtitle indicates that it is a practical approach, the book is also correct from a formal point of view and presents the necessary equations and derivations to understand both the physical mechanisms and the practicalities via a set of useful formulas. In addition, there is the more important aspect of many real-life examples of how a laser is actually manufactured and which the relevant parameters that determine its behaviour are. It impresses the amounts of information that are given in the book: this would be more typical of a thick handbook on semiconductor laser than of an agile book. Dr. Epperlein was able to identify the most important concepts and to present them in a clear though concise way. I am teaching a course on Optoelectronics and I'm going to advise students to refer to this book, because it has all the necessary concepts and derivations for a systematic understanding of semiconductor lasers with many worked-out examples, which will help the student to grasp the actual problems of designing, manufacturing, testing and using semiconductor lasers. All the various concepts are joined to very useful figures, which, if provided to instructors as files, can be a useful add-on for the use of the book as text for teaching. Concepts are always detailed with numbers to give a feeling of their practical use. In conclusion, I do find the book suitable for my teaching duties and will refer it to my students. Prof. Dr. Lorenzo Pavesi, Head of the Department of Physics, Head of the Nanoscience Laboratory, University of Trento, Italy 31 May 2013 =========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Robert W. Herrick, Ph.D., Senior Component Reliability Engineer, Intel Corp., Santa Clara, California, USA Dr. Epperlein has done the semiconductor laser community a great service, by releasing the most complete book on the market on the practical issues of how to make reliable semiconductor lasers. While dozens of books have been written over the past couple of decades on semiconductor laser design, only a handful have been written on semiconductor laser reliability. Prior to the release of this book, perhaps 40% of the material could be obtained elsewhere by combining five books: one on laser design, one on laser reliability, one on reliability calculations, and a couple of laser review books. Another 40% could be pieced together by collecting 50 -100 papers on the subjects of laser design, laser fabrication, characterization, and reliability. The remaining 20% have not previously been covered in any comprehensive way. Only the introductory material in the first half of the first chapter has good coverage elsewhere. The large majority of the knowledge in this book is generally held as “trade secret” by those with the expertise in the field, and most of those in the know are not free to discuss. The author was fortunate enough to work for the first half of his career in the IBM research labs, with access to unparalleled resources, and the ability to publish his work without trade secret restrictions. The results are still at the cutting edge of our understanding of semiconductor laser reliability today, and go well beyond the empirical “black box” approach many use of “try everything, and see what works.” The author did a fine job of pulling together material from many disparate fields. Dr. Epperlein has particular expertise in high power single mode semiconductor lasers, and those working on those type of lasers will be especially interested in this book, as there has never been a book published on the fabrication and qualification of such lasers before. But those in almost any field of semiconductor lasers will learn items of interest about device design, fabrication, reliability, and characterization. Unlike most other books, which intend to convey the scientific findings or past work of the author, this one is written more as a “how to” manual, which should make it more accessible and useful to development engineers and researchers in the field. It also has over 200 figures, which make it easier to follow. As with many books of this type, it is not necessary to read it from cover-to-cover; it is best skimmed, with deep diving into any areas of special interest to the reader. The book is remarkable also for how comprehensive it is – even experts will discover something new and useful. Dr. Epperlein’s book is an essential read for anyone looking to develop semiconductor lasers for anything other than pure research use, and I give it my highest recommendation. Robert W. Herrick, Ph.D., Senior Component Reliability Engineer, Intel Corp., Santa Clara, California, USA

Strong Field Laser Physics

Download Strong Field Laser Physics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 0387347550
Total Pages : 590 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Strong Field Laser Physics by : Thomas Brabec

Download or read book Strong Field Laser Physics written by Thomas Brabec and published by Springer. This book was released on 2008-08-17 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the rapid progress in laser technology a wealth of novel fundamental and applied applications of lasers in atomic and plasma physics have become possible. This book focuses on the interaction of high intensity lasers with matter. It reviews the state of the art of high power laser sources, intensity laser-atom and laser-plasma interactions, laser matter interaction at relativistic intensities, and QED with intense lasers.

Principles of Lasers

Download Principles of Lasers PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1489927484
Total Pages : 382 pages
Book Rating : 4.4/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Principles of Lasers by : Orazio Svelto

Download or read book Principles of Lasers written by Orazio Svelto and published by Springer. This book was released on 2013-06-29 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of more than ten years of research and teaching in the field of quantum electronics. The purpose of the book is to introduce the principles of lasers, starting from elementary notions of quantum mechanics and electromagnetism. Because it is an introductory book, an effort has been made to make it self contained to minimize the need for reference to other works. For the same reason; the references have been limited (whenever possible) either to review papers or to papers of seminal importance. The organization of the book is based on the fact that a laser can be thought of as consisting of three elements: (i) an active material, (ii) a pumping system, and (iii) a suitable resonator. Ac cordingly, after an introductory chapter, the next three chapters deal, respectively, with the interaction of radiation with matter, pumping processes, and the theory of passive optical resonators.

The Theory of Laser Materials Processing

Download The Theory of Laser Materials Processing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331956711X
Total Pages : 432 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis The Theory of Laser Materials Processing by : John Dowden

Download or read book The Theory of Laser Materials Processing written by John Dowden and published by Springer. This book was released on 2017-06-16 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revised edition of this important reference volume presents an expanded overview of the analytical and numerical approaches employed when exploring and developing modern laser materials processing techniques. The book shows how general principles can be used to obtain insight into laser processes, whether derived from fundamental physical theory or from direct observation of experimental results. The book gives readers an understanding of the strengths and limitations of simple numerical and analytical models that can then be used as the starting-point for more elaborate models of specific practical, theoretical or commercial value. Following an introduction to the mathematical formulation of some relevant classes of physical ideas, the core of the book consists of chapters addressing key applications in detail: cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding and forming. The second edition includes a new a chapter on glass cutting with lasers, as employed in the display industry. A further addition is a chapter on meta-modelling, whose purpose is to construct fast, simple and reliable models based on appropriate sources of information. It then makes it easy to explore data visually and is a convenient interactive tool for scientists to improve the quality of their models and for developers when designing their processes. As in the first edition, the book ends with an updated introduction to comprehensive numerical simulation. Although the book focuses on laser interactions with materials, many of the principles and methods explored can be applied to thermal modelling in a variety of different fields and at different power levels. It is aimed principally however at academic and industrial researchers and developers in the field of laser technology.

Laser Machining of Advanced Materials

Download Laser Machining of Advanced Materials PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0203093321
Total Pages : 236 pages
Book Rating : 4.2/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Laser Machining of Advanced Materials by : Narendra B Dahotre

Download or read book Laser Machining of Advanced Materials written by Narendra B Dahotre and published by CRC Press. This book was released on 2011-03-11 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced materials are becoming increasingly important as substitutes for traditional materials and as facilitators for new and unique products. They have had a considerable impact on the development of a wide range of strategic technologies. Structural ceramics, biomaterials, composites and intermetallics fall under this category of advanced mater

Basics in Dermatological Laser Applications

Download Basics in Dermatological Laser Applications PDF Online Free

Author :
Publisher : Karger Medical and Scientific Publishers
ISBN 13 : 3805597886
Total Pages : 208 pages
Book Rating : 4.8/5 (55 download)

DOWNLOAD NOW!


Book Synopsis Basics in Dermatological Laser Applications by : Inja Bogdan Allemann

Download or read book Basics in Dermatological Laser Applications written by Inja Bogdan Allemann and published by Karger Medical and Scientific Publishers. This book was released on 2011 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and practical overview In the last two decades, there has been a virtual explosion in the use of lasers in medicine, especially in the field of cosmetic dermatology. In fact, many of the clinical conditions presented today are solely treated by lasers. When discussing the term lasers', many different types of lasers and other similar energy-based devices have to be considered. Physicians who look upon this vast field often find themselves facing an extremely complex physics-based area of medicine with a veritable jungle of different devices on offer. This book provides a structured and comprehensive overview of the physical knowledge required to understand laser medicine and surgery. Moreover, the various clinical indications and treatments are clearly laid out and discussed. The authors, all experts in their field, have provided concise and topical chapters, which have purposely been kept generic when talking about the various lasers in order to increase the longevity of this volume.

Fundamentals of Laser Micromachining

Download Fundamentals of Laser Micromachining PDF Online Free

Author :
Publisher : Taylor & Francis
ISBN 13 : 1439860564
Total Pages : 249 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Laser Micromachining by : Ronald Schaeffer

Download or read book Fundamentals of Laser Micromachining written by Ronald Schaeffer and published by Taylor & Francis. This book was released on 2016-04-19 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to their flexible and efficient capabilities, lasers are often used over more traditional machining technologies, such as mechanical drilling and chemical etching, in manufacturing a wide variety of products, from medical implants, gyroscopes, and drug delivery catheters to aircraft engines, printed circuit boards, and fuel cells. Fundamentals

Laser Spectroscopy for Sensing

Download Laser Spectroscopy for Sensing PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 085709873X
Total Pages : 601 pages
Book Rating : 4.8/5 (57 download)

DOWNLOAD NOW!


Book Synopsis Laser Spectroscopy for Sensing by : Matthieu Baudelet

Download or read book Laser Spectroscopy for Sensing written by Matthieu Baudelet and published by Elsevier. This book was released on 2014-02-15 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser spectroscopy is a valuable tool for sensing and chemical analysis. Developments in lasers, detectors and mathematical analytical tools have led to improvements in the sensitivity and selectivity of spectroscopic techniques and extended their fields of application. Laser Spectroscopy for Sensing examines these advances and how laser spectroscopy can be used in a diverse range of industrial, medical, and environmental applications. Part one reviews basic concepts of atomic and molecular processes and presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation. In addition, it explains the selectivity, sensitivity, and stability of the measurements, the construction of databases, and the automation of data analysis by machine learning. Part two explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media. These chapters discuss imaging methods using laser-induced fluorescence and phosphorescence spectroscopies before focusing on light detection and ranging, photothermal spectroscopy and terahertz spectroscopy. Part three covers a variety of applications of these techniques, particularly the detection of chemical, biological, and explosive threats, as well as their use in medicine and forensic science. Finally, the book examines spectroscopic analysis of industrial materials and their applications in nuclear research and industry. The text provides readers with a broad overview of the techniques and applications of laser spectroscopy for sensing. It is of great interest to laser scientists and engineers, as well as professionals using lasers for medical applications, environmental applications, military applications, and material processing. Presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation Explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media Considers spectroscopic analysis of industrial materials and their applications in nuclear research and industry

Semiconductor Laser Diode

Download Semiconductor Laser Diode PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535105493
Total Pages : 392 pages
Book Rating : 4.5/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Semiconductor Laser Diode by : Dnyaneshwar Patil

Download or read book Semiconductor Laser Diode written by Dnyaneshwar Patil and published by BoD – Books on Demand. This book was released on 2012-04-25 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents a unique collection of the latest developments in the rapidly developing world of semiconductor laser diode technology and applications. An international group of distinguished contributors have covered particular aspects and the book includes optimization of semiconductor laser diode parameters for fascinating applications. This collection of chapters will be of considerable interest to engineers, scientists, technologists and physicists working in research and development in the field of semiconductor laser diode, as well as to young researchers who are at the beginning of their career.

Laser Scanning

Download Laser Scanning PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9533072059
Total Pages : 580 pages
Book Rating : 4.5/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Laser Scanning by : Chau-Chang Wang

Download or read book Laser Scanning written by Chau-Chang Wang and published by BoD – Books on Demand. This book was released on 2011-04-26 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since the invention of laser by Schawlow and Townes in 1958, various innovative ideas of laser-based applications emerge very year. At the same time, scientists and engineers keep on improving laser's power density, size, and cost which patch up the gap between theories and implementations. More importantly, our everyday life is changed and influenced by lasers even though we may not be fully aware of its existence. For example, it is there in cross-continent phone calls, price tag scanning in supermarkets, pointers in the classrooms, printers in the offices, accurate metal cutting in machine shops, etc. In this volume, we focus the recent developments related to laser scanning, a very powerful technique used in features detection and measurement. We invited researchers who do fundamental works in laser scanning theories or apply the principles of laser scanning to tackle problems encountered in medicine, geodesic survey, biology and archaeology. Twenty-eight chapters contributed by authors around the world to constitute this comprehensive book.

Emerging Trends in Laser & Spectroscopy and Applications

Download Emerging Trends in Laser & Spectroscopy and Applications PDF Online Free

Author :
Publisher : Allied Publishers
ISBN 13 : 9788184246261
Total Pages : 468 pages
Book Rating : 4.2/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Emerging Trends in Laser & Spectroscopy and Applications by : A. K. Rai

Download or read book Emerging Trends in Laser & Spectroscopy and Applications written by A. K. Rai and published by Allied Publishers. This book was released on 2010 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contributed articles presented at the Meghnad Saha Memorial Symposium on Emerging Trends in Laser and Spectroscopy and Applications during 23-25 March 2009 moderated by University of Allahabad, Physics Department.

Principles of Laser Materials Processing

Download Principles of Laser Materials Processing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470459190
Total Pages : 849 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Principles of Laser Materials Processing by : Elijah Kannatey-Asibu, Jr.

Download or read book Principles of Laser Materials Processing written by Elijah Kannatey-Asibu, Jr. and published by John Wiley & Sons. This book was released on 2009-04-22 with total page 849 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coverage of the most recent advancements and applications in laser materials processing This book provides state-of-the-art coverage of the field of laser materials processing, from fundamentals to applications to the latest research topics. The content is divided into three succinct parts: Principles of laser engineering-an introduction to the basic concepts and characteristics of lasers, design of their components, and beam delivery Engineering background&-a review of engineering concepts needed to analyze different processes: thermal analysis and fluid flow; solidification of molten metal; and residual stresses that evolve during processes Laser materials processing-a rigorous and detailed treatment of laser materials processing and its principle applications, including laser cutting and drilling, welding, surface modification, laser forming, and rapid prototyping Each chapter includes an outline, summary, and example sets to help readers reinforce their understanding of the material. This book is designed to prepare graduate students who will be entering industry; researchers interested in initiating a research program; and practicing engineers who need to stay abreast of the latest developments in this rapidly evolving field.

Innovation Networks in the German Laser Industry

Download Innovation Networks in the German Laser Industry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319079352
Total Pages : 363 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Innovation Networks in the German Laser Industry by : Muhamed Kudic

Download or read book Innovation Networks in the German Laser Industry written by Muhamed Kudic and published by Springer. This book was released on 2014-11-08 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technological innovation is fundamental to firm performance and economic prosperity. The aim of this book is to contribute to an in-depth understanding of collective innovation processes by analyzing publicly funded R&D cooperation and innovation networks in the German laser industry. Standing in a neo-Schumpeterian tradition, it employs interdisciplinary analytical concepts and draws upon a unique longitudinal dataset from the laser industry that covers more than two decades of observations. In brief, the book makes a valuable contribution by exploring how and why firm-specific R&D cooperation activities and network positions, large-scale network patterns, and evolutionary network change processes affect the innovative performance of laser source manufacturers in Germany.

Laser and Light Source Treatments for the Skin

Download Laser and Light Source Treatments for the Skin PDF Online Free

Author :
Publisher : JP Medical Ltd
ISBN 13 : 9350909952
Total Pages : 232 pages
Book Rating : 4.3/5 (59 download)

DOWNLOAD NOW!


Book Synopsis Laser and Light Source Treatments for the Skin by : Marc R Avram

Download or read book Laser and Light Source Treatments for the Skin written by Marc R Avram and published by JP Medical Ltd. This book was released on 2014-03-20 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical guide to use of laser light technology to treat skin conditions. Covers medical and cosmetic procedures. Extensive US author and editor team.

Handbook of Laser Welding Technologies

Download Handbook of Laser Welding Technologies PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0857098772
Total Pages : 685 pages
Book Rating : 4.8/5 (57 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Laser Welding Technologies by : S Katayama

Download or read book Handbook of Laser Welding Technologies written by S Katayama and published by Elsevier. This book was released on 2013-06-30 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser welding is a rapidly developing and versatile technology which has found increasing applications in industry and manufacturing. It allows the precision welding of small and hard-to-reach areas, and is particularly suitable for operation under computer or robotic control. The Handbook of laser welding technologies reviews the latest developments in the field and how they can be used across a variety of applications. Part one provides an introduction to the fundamentals of laser welding before moving on to explore developments in established technologies including CO2 laser welding, disk laser welding and laser micro welding technology. Part two highlights laser welding technologies for various materials including aluminium and titanium alloys, plastics and glass. Part three focuses on developments in emerging laser welding technologies with chapters on the applications of robotics in laser welding and developments in the modelling and simulation of laser and hybrid laser welding. Finally, part four explores the applications of laser welding in the automotive, railway and shipbuilding industries. The Handbook of laser welding technologies is a technical resource for researchers and engineers using laser welding technologies, professionals requiring an understanding of laser welding techniques and academics interested in the field. Provides an introduction to the fundamentals of laser welding including characteristics, welding defects and evolution of laser welding Discusses developments in a number of techniques including disk, conduction and laser micro welding Focusses on technologies for particular materials such as light metal alloys, plastics and glass

Laser Systems for Applications

Download Laser Systems for Applications PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9533074299
Total Pages : 322 pages
Book Rating : 4.5/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Laser Systems for Applications by : Krzysztof Jakubczak

Download or read book Laser Systems for Applications written by Krzysztof Jakubczak and published by BoD – Books on Demand. This book was released on 2011-12-14 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses topics related to various laser systems intended for the applications in science and various industries. Some of them are very recent achievements in laser physics (e.g. laser pulse cleaning), while others face their renaissance in industrial applications (e.g. CO2 lasers). This book has been divided into four different sections: (1) Laser and terahertz sources, (2) Laser beam manipulation, (3) Intense pulse propagation phenomena, and (4) Metrology. The book addresses such topics like: Q-switching, mode-locking, various laser systems, terahertz source driven by lasers, micro-lasers, fiber lasers, pulse and beam shaping techniques, pulse contrast metrology, and improvement techniques. This book is a great starting point for newcomers to laser physics.