Large Covariance and Autocovariance Matrices

Download Large Covariance and Autocovariance Matrices PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351398164
Total Pages : 297 pages
Book Rating : 4.3/5 (513 download)

DOWNLOAD NOW!


Book Synopsis Large Covariance and Autocovariance Matrices by : Arup Bose

Download or read book Large Covariance and Autocovariance Matrices written by Arup Bose and published by CRC Press. This book was released on 2018-07-03 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimation of large dispersion and autocovariance matrices using banding and tapering Joint convergence of high dimensional generalized dispersion matrices Limiting spectral distribution of symmetric polynomials in sample autocovariance matrices and normality of traces Application of free probability in high dimensional time series Estimation of coefficient matrices in high dimensional autoregressive process

Large Covariance and Autocovariance Matrices

Download Large Covariance and Autocovariance Matrices PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351398156
Total Pages : 359 pages
Book Rating : 4.3/5 (513 download)

DOWNLOAD NOW!


Book Synopsis Large Covariance and Autocovariance Matrices by : Arup Bose

Download or read book Large Covariance and Autocovariance Matrices written by Arup Bose and published by CRC Press. This book was released on 2018-07-03 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Covariance and Autocovariance Matrices brings together a collection of recent results on sample covariance and autocovariance matrices in high-dimensional models and novel ideas on how to use them for statistical inference in one or more high-dimensional time series models. The prerequisites include knowledge of elementary multivariate analysis, basic time series analysis and basic results in stochastic convergence. Part I is on different methods of estimation of large covariance matrices and auto-covariance matrices and properties of these estimators. Part II covers the relevant material on random matrix theory and non-commutative probability. Part III provides results on limit spectra and asymptotic normality of traces of symmetric matrix polynomial functions of sample auto-covariance matrices in high-dimensional linear time series models. These are used to develop graphical and significance tests for different hypotheses involving one or more independent high-dimensional linear time series. The book should be of interest to people in econometrics and statistics (large covariance matrices and high-dimensional time series), mathematics (random matrices and free probability) and computer science (wireless communication). Parts of it can be used in post-graduate courses on high-dimensional statistical inference, high-dimensional random matrices and high-dimensional time series models. It should be particularly attractive to researchers developing statistical methods in high-dimensional time series models. Arup Bose is a professor at the Indian Statistical Institute, Kolkata, India. He is a distinguished researcher in mathematical statistics and has been working in high-dimensional random matrices for the last fifteen years. He has been editor of Sankhyā for several years and has been on the editorial board of several other journals. He is a Fellow of the Institute of Mathematical Statistics, USA and all three national science academies of India, as well as the recipient of the S.S. Bhatnagar Award and the C.R. Rao Award. His first book Patterned Random Matrices was also published by Chapman & Hall. He has a forthcoming graduate text U-statistics, M-estimates and Resampling (with Snigdhansu Chatterjee) to be published by Hindustan Book Agency. Monika Bhattacharjee is a post-doctoral fellow at the Informatics Institute, University of Florida. After graduating from St. Xavier's College, Kolkata, she obtained her master’s in 2012 and PhD in 2016 from the Indian Statistical Institute. Her thesis in high-dimensional covariance and auto-covariance matrices, written under the supervision of Dr. Bose, has received high acclaim.

Probability and Stochastic Processes

Download Probability and Stochastic Processes PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819999944
Total Pages : 207 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Probability and Stochastic Processes by : Siva Athreya

Download or read book Probability and Stochastic Processes written by Siva Athreya and published by Springer Nature. This book was released on with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt:

High-Dimensional Covariance Estimation

Download High-Dimensional Covariance Estimation PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118034295
Total Pages : 204 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Covariance Estimation by : Mohsen Pourahmadi

Download or read book High-Dimensional Covariance Estimation written by Mohsen Pourahmadi and published by John Wiley & Sons. This book was released on 2013-06-24 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.

Patterned Random Matrices

Download Patterned Random Matrices PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429948891
Total Pages : 293 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Patterned Random Matrices by : Arup Bose

Download or read book Patterned Random Matrices written by Arup Bose and published by CRC Press. This book was released on 2018-05-23 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large dimensional random matrices (LDRM) with specific patterns arise in econometrics, computer science, mathematics, physics, and statistics. This book provides an easy initiation to LDRM. Through a unified approach, we investigate the existence and properties of the limiting spectral distribution (LSD) of different patterned random matrices as the dimension grows. The main ingredients are the method of moments and normal approximation with rudimentary combinatorics for support. Some elementary results from matrix theory are also used. By stretching the moment arguments, we also have a brush with the intriguing but difficult concepts of joint convergence of sequences of random matrices and its ramifications. This book covers the Wigner matrix, the sample covariance matrix, the Toeplitz matrix, the Hankel matrix, the sample autocovariance matrix and the k-Circulant matrices. Quick and simple proofs of their LSDs are provided and it is shown how the semi-circle law and the Marchenko-Pastur law arise as the LSDs of the first two matrices. Extending the basic approach, we also establish interesting limits for some triangular matrices, band matrices, balanced matrices, and the sample autocovariance matrix. We also study the joint convergence of several patterned matrices, and show that independent Wigner matrices converge jointly and are asymptotically free of other patterned matrices. Arup Bose is a Professor at the Indian Statistical Institute, Kolkata, India. He is a distinguished researcher in Mathematical Statistics and has been working in high-dimensional random matrices for the last fifteen years. He has been the Editor of Sankyhā for several years and has been on the editorial board of several other journals. He is a Fellow of the Institute of Mathematical Statistics, USA and all three national science academies of India, as well as the recipient of the S.S. Bhatnagar Award and the C.R. Rao Award. His forthcoming books are the monograph, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee), to be published by Chapman & Hall/CRC Press, and a graduate text, U-statistics, M-estimates and Resampling (with Snigdhansu Chatterjee), to be published by Hindustan Book Agency.

High-Dimensional Covariance Estimation

Download High-Dimensional Covariance Estimation PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118573668
Total Pages : 204 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Covariance Estimation by : Mohsen Pourahmadi

Download or read book High-Dimensional Covariance Estimation written by Mohsen Pourahmadi and published by John Wiley & Sons. This book was released on 2013-05-28 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.

Random Matrices and Non-Commutative Probability

Download Random Matrices and Non-Commutative Probability PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000458822
Total Pages : 420 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Random Matrices and Non-Commutative Probability by : Arup Bose

Download or read book Random Matrices and Non-Commutative Probability written by Arup Bose and published by CRC Press. This book was released on 2021-10-26 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introductory book on Non-Commutative Probability or Free Probability and Large Dimensional Random Matrices. Basic concepts of free probability are introduced by analogy with classical probability in a lucid and quick manner. It then develops the results on the convergence of large dimensional random matrices, with a special focus on the interesting connections to free probability. The book assumes almost no prerequisite for the most part. However, familiarity with the basic convergence concepts in probability and a bit of mathematical maturity will be helpful. Combinatorial properties of non-crossing partitions, including the Möbius function play a central role in introducing free probability. Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants. Free cumulants are introduced through the Möbius function. Free product probability spaces are constructed using free cumulants. Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed. Convergence of the empirical spectral distribution is discussed for symmetric matrices. Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices. Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices. Exercises, at advanced undergraduate and graduate level, are provided in each chapter.

Sparse Graphical Modeling for High Dimensional Data

Download Sparse Graphical Modeling for High Dimensional Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429584806
Total Pages : 151 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Sparse Graphical Modeling for High Dimensional Data by : Faming Liang

Download or read book Sparse Graphical Modeling for High Dimensional Data written by Faming Liang and published by CRC Press. This book was released on 2023-08-02 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for learning sparse graphical models with conditional independence tests Complete treatments for different types of data, Gaussian, Poisson, multinomial, and mixed data Unified treatments for data integration, network comparison, and covariate adjustment Unified treatments for missing data and heterogeneous data Efficient methods for joint estimation of multiple graphical models Effective methods of high-dimensional variable selection Effective methods of high-dimensional inference

Introduction to High-Dimensional Statistics

Download Introduction to High-Dimensional Statistics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000408329
Total Pages : 364 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Introduction to High-Dimensional Statistics by : Christophe Giraud

Download or read book Introduction to High-Dimensional Statistics written by Christophe Giraud and published by CRC Press. This book was released on 2021-08-25 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.

U-Statistics, Mm-Estimators and Resampling

Download U-Statistics, Mm-Estimators and Resampling PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811322481
Total Pages : 181 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis U-Statistics, Mm-Estimators and Resampling by : Arup Bose

Download or read book U-Statistics, Mm-Estimators and Resampling written by Arup Bose and published by Springer. This book was released on 2018-08-28 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introductory text on a broad class of statistical estimators that are minimizers of convex functions. It covers the basics of U-statistics and Mm-estimators and develops their asymptotic properties. It also provides an elementary introduction to resampling, particularly in the context of these estimators. The last chapter is on practical implementation of the methods presented in other chapters, using the free software R.

Time Series Analysis: Methods and Applications

Download Time Series Analysis: Methods and Applications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444538631
Total Pages : 777 pages
Book Rating : 4.4/5 (445 download)

DOWNLOAD NOW!


Book Synopsis Time Series Analysis: Methods and Applications by :

Download or read book Time Series Analysis: Methods and Applications written by and published by Elsevier. This book was released on 2012-05-18 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas

Time Series Analysis: Methods and Applications

Download Time Series Analysis: Methods and Applications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444538585
Total Pages : 778 pages
Book Rating : 4.4/5 (445 download)

DOWNLOAD NOW!


Book Synopsis Time Series Analysis: Methods and Applications by : Tata Subba Rao

Download or read book Time Series Analysis: Methods and Applications written by Tata Subba Rao and published by Elsevier. This book was released on 2012-06-26 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.

Cognitive Radio Communication and Networking

Download Cognitive Radio Communication and Networking PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118376293
Total Pages : 496 pages
Book Rating : 4.1/5 (183 download)

DOWNLOAD NOW!


Book Synopsis Cognitive Radio Communication and Networking by : Robert Caiming Qiu

Download or read book Cognitive Radio Communication and Networking written by Robert Caiming Qiu and published by John Wiley & Sons. This book was released on 2012-09-10 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author presents a unified treatment of this highly interdisciplinary topic to help define the notion of cognitive radio. The book begins with addressing issues such as the fundamental system concept and basic mathematical tools such as spectrum sensing and machine learning, before moving on to more advanced concepts and discussions about the future of cognitive radio. From the fundamentals in spectrum sensing to the applications of cognitive algorithms to radio communications, and discussion of radio platforms and testbeds to show the applicability of the theory to practice, the author aims to provide an introduction to a fast moving topic for students and researchers seeking to develop a thorough understanding of cognitive radio networks. Examines basic mathematical tools before moving on to more advanced concepts and discussions about the future of cognitive radio Describe the fundamentals of cognitive radio, providing a step by step treatment of the topics to enable progressive learning Includes questions, exercises and suggestions for extra reading at the end of each chapter Topics covered in the book include: Spectrum Sensing: Basic Techniques; Cooperative Spectrum Sensing Wideband Spectrum Sensing; Agile Transmission Techniques: Orthogonal Frequency Division Multiplexing Multiple Input Multiple Output for Cognitive Radio; Convex Optimization for Cognitive Radio; Cognitive Core (I): Algorithms for Reasoning and Learning; Cognitive Core (II): Game Theory; Cognitive Radio Network IEEE 802.22: The First Cognitive Radio Wireless Regional Area Network Standard, and Radio Platforms and Testbeds.

Bayesian Nonparametrics for Causal Inference and Missing Data

Download Bayesian Nonparametrics for Causal Inference and Missing Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000927717
Total Pages : 263 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Nonparametrics for Causal Inference and Missing Data by : Michael J. Daniels

Download or read book Bayesian Nonparametrics for Causal Inference and Missing Data written by Michael J. Daniels and published by CRC Press. This book was released on 2023-08-23 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest. The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials. Features • Thorough discussion of both BNP and its interplay with causal inference and missing data • How to use BNP and g-computation for causal inference and non-ignorable missingness • How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions • Detailed case studies illustrating the application of BNP methods to causal inference and missing data • R code and/or packages to implement BNP in causal inference and missing data problems The book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically sophisticated epidemiologists and medical researchers.

Functional Data Analysis with R

Download Functional Data Analysis with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1003856306
Total Pages : 338 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Functional Data Analysis with R by : Ciprian M. Crainiceanu

Download or read book Functional Data Analysis with R written by Ciprian M. Crainiceanu and published by CRC Press. This book was released on 2024-03-11 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging technologies generate data sets of increased size and complexity that require new or updated statistical inferential methods and scalable, reproducible software. These data sets often involve measurements of a continuous underlying process, and benefit from a functional data perspective. Functional Data Analysis with R presents many ideas for handling functional data including dimension reduction techniques, smoothing, functional regression, structured decompositions of curves, and clustering. The idea is for the reader to be able to immediately reproduce the results in the book, implement these methods, and potentially design new methods and software that may be inspired by these approaches. Features: Functional regression models receive a modern treatment that allows extensions to many practical scenarios and development of state-of-the-art software. The connection between functional regression, penalized smoothing, and mixed effects models is used as the cornerstone for inference. Multilevel, longitudinal, and structured functional data are discussed with emphasis on emerging functional data structures. Methods for clustering functional data before and after smoothing are discussed. Multiple new functional data sets with dense and sparse sampling designs from various application areas are presented, including the NHANES linked accelerometry and mortality data, COVID-19 mortality data, CD4 counts data, and the CONTENT child growth study. Step-by-step software implementations are included, along with a supplementary website (www.FunctionalDataAnalysis.com) featuring software, data, and tutorials. More than 100 plots for visualization of functional data are presented. Functional Data Analysis with R is primarily aimed at undergraduate, master's, and PhD students, as well as data scientists and researchers working on functional data analysis. The book can be read at different levels and combines state-of-the-art software, methods, and inference. It can be used for self-learning, teaching, and research, and will particularly appeal to anyone who is interested in practical methods for hands-on, problem-forward functional data analysis. The reader should have some basic coding experience, but expertise in R is not required.

Mixture Models

Download Mixture Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1040009875
Total Pages : 398 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Mixture Models by : Weixin Yao

Download or read book Mixture Models written by Weixin Yao and published by CRC Press. This book was released on 2024-04-18 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixture models are a powerful tool for analyzing complex and heterogeneous datasets across many scientific fields, from finance to genomics. Mixture Models: Parametric, Semiparametric, and New Directions provides an up-to-date introduction to these models, their recent developments, and their implementation using R. It fills a gap in the literature by covering not only the basics of finite mixture models, but also recent developments such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling. Features Comprehensive overview of the methods and applications of mixture models Key topics include hypothesis testing, model selection, estimation methods, and Bayesian approaches Recent developments, such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling Examples and case studies from such fields as astronomy, biology, genomics, economics, finance, medicine, engineering, and sociology Integrated R code for many of the models, with code and data available in the R Package MixSemiRob Mixture Models: Parametric, Semiparametric, and New Directions is a valuable resource for researchers and postgraduate students from statistics, biostatistics, and other fields. It could be used as a textbook for a course on model-based clustering methods, and as a supplementary text for courses on data mining, semiparametric modeling, and high-dimensional data analysis.

The Energy of Data and Distance Correlation

Download The Energy of Data and Distance Correlation PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482242753
Total Pages : 467 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis The Energy of Data and Distance Correlation by : Gabor J. Szekely

Download or read book The Energy of Data and Distance Correlation written by Gabor J. Szekely and published by CRC Press. This book was released on 2023-06-30 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy distance is a statistical distance between the distributions of random vectors, which characterizes equality of distributions. The name energy derives from Newton's gravitational potential energy, and there is an elegant relation to the notion of potential energy between statistical observations. Energy statistics are functions of distances between statistical observations in metric spaces. The authors hope this book will spark the interest of most statisticians who so far have not explored E-statistics and would like to apply these new methods using R. The Energy of Data and Distance Correlation is intended for teachers and students looking for dedicated material on energy statistics, but can serve as a supplement to a wide range of courses and areas, such as Monte Carlo methods, U-statistics or V-statistics, measures of multivariate dependence, goodness-of-fit tests, nonparametric methods and distance based methods. •E-statistics provides powerful methods to deal with problems in multivariate inference and analysis. •Methods are implemented in R, and readers can immediately apply them using the freely available energy package for R. •The proposed book will provide an overview of the existing state-of-the-art in development of energy statistics and an overview of applications. •Background and literature review is valuable for anyone considering further research or application in energy statistics.