Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Laboratory And Scientific Computing
Download Laboratory And Scientific Computing full books in PDF, epub, and Kindle. Read online Laboratory And Scientific Computing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Elements of Scientific Computing by : Aslak Tveito
Download or read book Elements of Scientific Computing written by Aslak Tveito and published by Springer Science & Business Media. This book was released on 2010-09-24 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science used to be experiments and theory, now it is experiments, theory and computations. The computational approach to understanding nature and technology is currently flowering in many fields such as physics, geophysics, astrophysics, chemistry, biology, and most engineering disciplines. This book is a gentle introduction to such computational methods where the techniques are explained through examples. It is our goal to teach principles and ideas that carry over from field to field. You will learn basic methods and how to implement them. In order to gain the most from this text, you will need prior knowledge of calculus, basic linear algebra and elementary programming.
Book Synopsis An Introduction to High-performance Scientific Computing by : Lloyd Dudley Fosdick
Download or read book An Introduction to High-performance Scientific Computing written by Lloyd Dudley Fosdick and published by MIT Press. This book was released on 1996 with total page 838 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series
Book Synopsis The Laboratory Computer by : John Dempster
Download or read book The Laboratory Computer written by John Dempster and published by Academic Press. This book was released on 2001-07-10 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Laboratory Computer: A Practical Guide for Physiologists and Neuroscientists introduces the reader to both the basic principles and the actual practice of recording physiological signals using the computer. It describes the basic operation of the computer, the types of transducers used to measure physical quantities such as temperature and pressure, how these signals are amplified and converted into digital form, and the mathematical analysis techniques that can then be applied. It is aimed at the physiologist or neuroscientist using modern computer data acquisition systems in the laboratory, providing both an understanding of how such systems work and a guide to their purchase and implementation. The key facts and concepts that are vital for the effective use of computer data acquisition systems A unique overview of the commonly available laboratory hardware and software, including both commercial and free software A practical guide to designing one's own or choosing commercial data acquisition hardware and software
Book Synopsis From Science to Computational Sciences by : Gabriele Gramelsberger
Download or read book From Science to Computational Sciences written by Gabriele Gramelsberger and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In 1946 John von Neumann stated that science is stagnant along the entire front of complex problems, proposing the use of largescale computing machines to overcome this stagnation. In other words, Neumann advocated replacing analytical methods with numerical ones. The invention of the computer in the 1940s allowed scientists to realise numerical simulations of increasingly complex problems like weather forecasting, and climate and molecular modelling. Today, computers are widely used as computational laboratories, shifting science toward the computational sciences. By replacing analytical methods with numerical ones, they have expanded theory and experimentation by simulation. During the last decades hundreds of computational departments have been established all over the world and countless computer-based simulations have been conducted. This volume explores the epoch-making influence of automatic computing machines on science, in particular as simulation tools."--Back cover.
Book Synopsis Verification and Validation in Scientific Computing by : William L. Oberkampf
Download or read book Verification and Validation in Scientific Computing written by William L. Oberkampf and published by Cambridge University Press. This book was released on 2010-10-14 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.
Book Synopsis Scientific Computing with Multicore and Accelerators by : Jakub Kurzak
Download or read book Scientific Computing with Multicore and Accelerators written by Jakub Kurzak and published by CRC Press. This book was released on 2010-12-07 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: The hybrid/heterogeneous nature of future microprocessors and large high-performance computing systems will result in a reliance on two major types of components: multicore/manycore central processing units and special purpose hardware/massively parallel accelerators. While these technologies have numerous benefits, they also pose substantial perfo
Book Synopsis Scientific Computing by : Michael T. Heath
Download or read book Scientific Computing written by Michael T. Heath and published by SIAM. This book was released on 2018-11-14 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results.? In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.
Book Synopsis Introduction to Scientific Computing by : Charles F. Van Loan
Download or read book Introduction to Scientific Computing written by Charles F. Van Loan and published by Pearson. This book was released on 2000 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unique in content and approach, this book covers all the topics that are usually covered in an introduction to scientific computing--but folds in graphics and matrix-vector manipulation in a way that gets readers to appreciate the "connection" between continuous mathematics and computing. "MATLAB 5" is used "throughout" to encourage experimentation, and each chapter focuses on a different important theorem--allowing readers to appreciate the rigorous side of scientific computing. In addition to standard topical coverage, each chapter includes 1) a sketch of a "hard" problem that involves ill-conditioning, high dimension, etc.; 2)at least one theorem with both a rigorous proof and a "proof by MATLAB" experiment to bolster intuition; 3)at least one recursive algorithm; and 4)at least one connection to a real-world application. The book revolves around examples that are packaged in 200+ M-files, which, collectively, communicate all the key mathematical ideas and an appreciation for the subtleties of numerical computing. Power Tools of the Trade. Polynomial Interpolation. Piecewise Polynomial Interpolation. Numerical Integration. Matrix Computations. Linear Systems. The QR and Cholesky Factorizations. Nonlinear Equations and Optimization. The Initial Value Problem. For engineers and mathematicians.
Book Synopsis Introduction to Scientific Programming with Python by : Joakim Sundnes
Download or read book Introduction to Scientific Programming with Python written by Joakim Sundnes and published by . This book was released on 2020 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book offers an initial introduction to programming for scientific and computational applications using the Python programming language. The presentation style is compact and example-based, making it suitable for students and researchers with little or no prior experience in programming. The book uses relevant examples from mathematics and the natural sciences to present programming as a practical toolbox that can quickly enable readers to write their own programs for data processing and mathematical modeling. These tools include file reading, plotting, simple text analysis, and using NumPy for numerical computations, which are fundamental building blocks of all programs in data science and computational science. At the same time, readers are introduced to the fundamental concepts of programming, including variables, functions, loops, classes, and object-oriented programming. Accordingly, the book provides a sound basis for further computer science and programming studies.
Book Synopsis Introduction to Scientific and Technical Computing by : Frank T. Willmore
Download or read book Introduction to Scientific and Technical Computing written by Frank T. Willmore and published by CRC Press. This book was released on 2016-08-19 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Created to help scientists and engineers write computer code, this practical book addresses the important tools and techniques that are necessary for scientific computing, but which are not yet commonplace in science and engineering curricula. This book contains chapters summarizing the most important topics that computational researchers need to know about. It leverages the viewpoints of passionate experts involved with scientific computing courses around the globe and aims to be a starting point for new computational scientists and a reference for the experienced. Each contributed chapter focuses on a specific tool or skill, providing the content needed to provide a working knowledge of the topic in about one day. While many individual books on specific computing topics exist, none is explicitly focused on getting technical professionals and students up and running immediately across a variety of computational areas.
Book Synopsis Software Engineering for Science by : Jeffrey C. Carver
Download or read book Software Engineering for Science written by Jeffrey C. Carver and published by CRC Press. This book was released on 2016-11-03 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software.
Book Synopsis A First Course in Scientific Computing by : Rubin Landau
Download or read book A First Course in Scientific Computing written by Rubin Landau and published by Princeton University Press. This book was released on 2011-10-30 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a new approach to introductory scientific computing. It aims to make students comfortable using computers to do science, to provide them with the computational tools and knowledge they need throughout their college careers and into their professional careers, and to show how all the pieces can work together. Rubin Landau introduces the requisite mathematics and computer science in the course of realistic problems, from energy use to the building of skyscrapers to projectile motion with drag. He is attentive to how each discipline uses its own language to describe the same concepts and how computations are concrete instances of the abstract. Landau covers the basics of computation, numerical analysis, and programming from a computational science perspective. The first part of the printed book uses the problem-solving environment Maple as its context, with the same material covered on the accompanying CD as both Maple and Mathematica programs; the second part uses the compiled language Java, with equivalent materials in Fortran90 on the CD; and the final part presents an introduction to LaTeX replete with sample files. Providing the essentials of computing, with practical examples, A First Course in Scientific Computing adheres to the principle that science and engineering students learn computation best while sitting in front of a computer, book in hand, in trial-and-error mode. Not only is it an invaluable learning text and an essential reference for students of mathematics, engineering, physics, and other sciences, but it is also a consummate model for future textbooks in computational science and engineering courses. A broad spectrum of computing tools and examples that can be used throughout an academic career Practical computing aimed at solving realistic problems Both symbolic and numerical computations A multidisciplinary approach: science + math + computer science Maple and Java in the book itself; Mathematica, Fortran90, Maple and Java on the accompanying CD in an interactive workbook format
Book Synopsis A Primer on Scientific Programming with Python by : Hans Petter Langtangen
Download or read book A Primer on Scientific Programming with Python written by Hans Petter Langtangen and published by Springer. This book was released on 2016-07-28 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Book Synopsis Scientific Computing by : John A. Trangenstein
Download or read book Scientific Computing written by John A. Trangenstein and published by Springer. This book was released on 2018-05-14 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses basic principles of computation, and fundamental numerical algorithms that will serve as basic tools for the subsequent two volumes. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 80 examples, 324 exercises, 77 algorithms, 35 interactive JavaScript programs, 391 references to software programs and 4 case studies. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in LAPACK, GSLIB and MATLAB. This book could be used for an introductory course in numerical methods, for either upper level undergraduates or first year graduate students. Parts of the text could be used for specialized courses, such as principles of computer languages or numerical linear algebra.
Book Synopsis Parallel Processing for Scientific Computing by : Michael A. Heroux
Download or read book Parallel Processing for Scientific Computing written by Michael A. Heroux and published by SIAM. This book was released on 2006-01-01 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.
Book Synopsis Introduction to Computational Science by : Angela B. Shiflet
Download or read book Introduction to Computational Science written by Angela B. Shiflet and published by Princeton University Press. This book was released on 2014-03-30 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to computational science—now fully updated and expanded Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind—now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors
Book Synopsis Mathematics by Experiment by : Jonathan Borwein
Download or read book Mathematics by Experiment written by Jonathan Borwein and published by CRC Press. This book was released on 2008-10-27 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and updated second edition maintains the content and spirit of the first edition and includes a new chapter, "Recent Experiences", that provides examples of experimental mathematics that have come to light since the publication of the first edition in 2003. For more examples and insights, Experimentation in Mathematics: Computational P