Julia for Machine Learning

Download Julia for Machine Learning PDF Online Free

Author :
Publisher :
ISBN 13 : 9781634628136
Total Pages : 298 pages
Book Rating : 4.6/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Julia for Machine Learning by : Zacharias Voulgaris

Download or read book Julia for Machine Learning written by Zacharias Voulgaris and published by . This book was released on 2020-05-18 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unleash the power of Julia for your machine learning tasks. We reveal why Julia is chosen for more and more data science and machine learning projects, including Julia's ability to run algorithms at lightning speed. Next, we show you how to set up Julia and various IDEs such as Jupyter. Afterward, we explore key Julia libraries, which are useful for data science work, including packages related to visuals, data structures, and mathematical processes. After building a foundation in Julia, we dive into machine learning, with foundational concepts reinforced by Julia use cases. The use cases build upon each other, reaching the level where we code a machine learning model from scratch using Julia. All of these use cases are available in a series of Jupyter notebooks. After covering dimensionality reduction methods, we explore additional machine learning topics, such as parallelization and data engineering. Although knowing how to use Julia is essential, it is even more important to communicate our results to the business, which we cover next, including how to work efficiently with project stakeholders. Our Julia journey then ascends to the finer points, including improving machine learning transparency, reconciling machine learning with statistics, and continuing to innovate with Julia. The final chapters cover future trends in the areas of Julia, machine learning, and artificial intelligence. We explain machine learning and Bayesian Statistics hybrid systems, and Julia's Gen language. We share many resources so you can continue to sharpen your Julia and machine learning skills. Each chapter concludes with a series of questions designed to reinforce that chapter's material, with answers provided in an appendix. Other appendices include an extensive glossary, bridge packages between Julia and other programming languages, and an overview of three data science-related heuristics implemented in Julia, which aren't in any of the existing packages.

Data Science with Julia

Download Data Science with Julia PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351013661
Total Pages : 220 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Data Science with Julia by : Paul D. McNicholas

Download or read book Data Science with Julia written by Paul D. McNicholas and published by CRC Press. This book was released on 2019-01-02 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist."- Professor Charles Bouveyron, INRIA Chair in Data Science, Université Côte d’Azur, Nice, France Julia, an open-source programming language, was created to be as easy to use as languages such as R and Python while also as fast as C and Fortran. An accessible, intuitive, and highly efficient base language with speed that exceeds R and Python, makes Julia a formidable language for data science. Using well known data science methods that will motivate the reader, Data Science with Julia will get readers up to speed on key features of the Julia language and illustrate its facilities for data science and machine learning work. Features: Covers the core components of Julia as well as packages relevant to the input, manipulation and representation of data. Discusses several important topics in data science including supervised and unsupervised learning. Reviews data visualization using the Gadfly package, which was designed to emulate the very popular ggplot2 package in R. Readers will learn how to make many common plots and how to visualize model results. Presents how to optimize Julia code for performance. Will be an ideal source for people who already know R and want to learn how to use Julia (though no previous knowledge of R or any other programming language is required). The advantages of Julia for data science cannot be understated. Besides speed and ease of use, there are already over 1,900 packages available and Julia can interface (either directly or through packages) with libraries written in R, Python, Matlab, C, C++ or Fortran. The book is for senior undergraduates, beginning graduate students, or practicing data scientists who want to learn how to use Julia for data science. "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist." Professor Charles Bouveyron INRIA Chair in Data Science Université Côte d’Azur, Nice, France

Supervised Machine Learning for Text Analysis in R

Download Supervised Machine Learning for Text Analysis in R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000461971
Total Pages : 402 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Supervised Machine Learning for Text Analysis in R by : Emil Hvitfeldt

Download or read book Supervised Machine Learning for Text Analysis in R written by Emil Hvitfeldt and published by CRC Press. This book was released on 2021-10-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.

Tanmay Teaches Julia for Beginners: A Springboard to Machine Learning for All Ages

Download Tanmay Teaches Julia for Beginners: A Springboard to Machine Learning for All Ages PDF Online Free

Author :
Publisher : McGraw Hill Professional
ISBN 13 : 1260456641
Total Pages : 191 pages
Book Rating : 4.2/5 (64 download)

DOWNLOAD NOW!


Book Synopsis Tanmay Teaches Julia for Beginners: A Springboard to Machine Learning for All Ages by : Tanmay Bakshi

Download or read book Tanmay Teaches Julia for Beginners: A Springboard to Machine Learning for All Ages written by Tanmay Bakshi and published by McGraw Hill Professional. This book was released on 2019-12-06 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. A quick guide to start writing your own fun and useful Julia apps—no prior experience required! This engaging guide shows, step by step, how to build custom programs using Julia, the open-source, intuitive scripting language. Written by 15-year-old technology phenom Tanmay Bakshi, the book is presented in an accessible style that makes learning easy and enjoyable. Tanmay Teaches Julia for Beginners: A Springboard to Machine Learning for All Ages clearly explains the basics of Julia programming and takes a look at cutting-edge machine learning applications. You will also discover how to interface your Julia apps with code written in Python. Inside, you’ll learn to: • Set up and configure your Julia environment • Get up and running writing your own Julia apps • Define variables and use them in your programs • Use conditions, iterations, for-loops, and while-loops • Create, go through, and modify arrays • Build an app to manage things you lend and get back from your friends • Create and utilize dictionaries • Simplify maintenance of your code using functions • Apply functions on arrays and use functions recursively and generically • Understand and program basic machine learning apps

Julia Programming Projects

Download Julia Programming Projects PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788297253
Total Pages : 494 pages
Book Rating : 4.7/5 (882 download)

DOWNLOAD NOW!


Book Synopsis Julia Programming Projects by : Adrian Salceanu

Download or read book Julia Programming Projects written by Adrian Salceanu and published by Packt Publishing Ltd. This book was released on 2018-12-26 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step guide that demonstrates how to build simple-to-advanced applications through examples in Julia Lang 1.x using modern tools Key FeaturesWork with powerful open-source libraries for data wrangling, analysis, and visualizationDevelop full-featured, full-stack web applications Learn to perform supervised and unsupervised machine learning and time series analysis with JuliaBook Description Julia is a new programming language that offers a unique combination of performance and productivity. Its powerful features, friendly syntax, and speed are attracting a growing number of adopters from Python, R, and Matlab, effectively raising the bar for modern general and scientific computing. After six years in the making, Julia has reached version 1.0. Now is the perfect time to learn it, due to its large-scale adoption across a wide range of domains, including fintech, biotech, education, and AI. Beginning with an introduction to the language, Julia Programming Projects goes on to illustrate how to analyze the Iris dataset using DataFrames. You will explore functions and the type system, methods, and multiple dispatch while building a web scraper and a web app. Next, you'll delve into machine learning, where you'll build a books recommender system. You will also see how to apply unsupervised machine learning to perform clustering on the San Francisco business database. After metaprogramming, the final chapters will discuss dates and time, time series analysis, visualization, and forecasting. We'll close with package development, documenting, testing and benchmarking. By the end of the book, you will have gained the practical knowledge to build real-world applications in Julia. What you will learnLeverage Julia's strengths, its top packages, and main IDE optionsAnalyze and manipulate datasets using Julia and DataFramesWrite complex code while building real-life Julia applicationsDevelop and run a web app using Julia and the HTTP packageBuild a recommender system using supervised machine learning Perform exploratory data analysis Apply unsupervised machine learning algorithmsPerform time series data analysis, visualization, and forecastingWho this book is for Data scientists, statisticians, business analysts, and developers who are interested in learning how to use Julia to crunch numbers, analyze data and build apps will find this book useful. A basic knowledge of programming is assumed.

Hands-On Computer Vision with Julia

Download Hands-On Computer Vision with Julia PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788999231
Total Pages : 192 pages
Book Rating : 4.7/5 (889 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Computer Vision with Julia by : Dmitrijs Cudihins

Download or read book Hands-On Computer Vision with Julia written by Dmitrijs Cudihins and published by Packt Publishing Ltd. This book was released on 2018-06-29 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the various packages in Julia that support image processing and build neural networks for video processing and object tracking. Key Features Build a full-fledged image processing application using JuliaImages Perform basic to advanced image and video stream processing with Julia's APIs Understand and optimize various features of OpenCV with easy examples Book Description Hands-On Computer Vision with Julia is a thorough guide for developers who want to get started with building computer vision applications using Julia. Julia is well suited to image processing because it’s easy to use and lets you write easy-to-compile and efficient machine code. . This book begins by introducing you to Julia's image processing libraries such as Images.jl and ImageCore.jl. You’ll get to grips with analyzing and transforming images using JuliaImages; some of the techniques discussed include enhancing and adjusting images. As you make your way through the chapters, you’ll learn how to classify images, cluster them, and apply neural networks to solve computer vision problems. In the concluding chapters, you will explore OpenCV applications to perform real-time computer vision analysis, for example, face detection and object tracking. You will also understand Julia's interaction with Tesseract to perform optical character recognition and build an application that brings together all the techniques we introduced previously to consolidate the concepts learned. By end of the book, you will have understood how to utilize various Julia packages and a few open source libraries such as Tesseract and OpenCV to solve computer vision problems with ease. What you will learn Analyze image metadata and identify critical data using JuliaImages Apply filters and improve image quality and color schemes Extract 2D features for image comparison using JuliaFeatures Cluster and classify images with KNN/SVM machine learning algorithms Recognize text in an image using the Tesseract library Use OpenCV to recognize specific objects or faces in images and videos Build neural network and classify images with MXNet Who this book is for Hands-On Computer Vision with Julia is for Julia developers who are interested in learning how to perform image processing and want to explore the field of computer vision. Basic knowledge of Julia will help you understand the concepts more effectively.

Think Julia

Download Think Julia PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492044989
Total Pages : 301 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Think Julia by : Ben Lauwens

Download or read book Think Julia written by Ben Lauwens and published by "O'Reilly Media, Inc.". This book was released on 2019-04-05 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’re just learning how to program, Julia is an excellent JIT-compiled, dynamically typed language with a clean syntax. This hands-on guide uses Julia 1.0 to walk you through programming one step at a time, beginning with basic programming concepts before moving on to more advanced capabilities, such as creating new types and multiple dispatch. Designed from the beginning for high performance, Julia is a general-purpose language ideal for not only numerical analysis and computational science but also web programming and scripting. Through exercises in each chapter, you’ll try out programming concepts as you learn them. Think Julia is perfect for students at the high school or college level as well as self-learners and professionals who need to learn programming basics. Start with the basics, including language syntax and semantics Get a clear definition of each programming concept Learn about values, variables, statements, functions, and data structures in a logical progression Discover how to work with files and databases Understand types, methods, and multiple dispatch Use debugging techniques to fix syntax, runtime, and semantic errors Explore interface design and data structures through case studies

Practical Machine Learning

Download Practical Machine Learning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1784394017
Total Pages : 468 pages
Book Rating : 4.7/5 (843 download)

DOWNLOAD NOW!


Book Synopsis Practical Machine Learning by : Sunila Gollapudi

Download or read book Practical Machine Learning written by Sunila Gollapudi and published by Packt Publishing Ltd. This book was released on 2016-01-30 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tackle the real-world complexities of modern machine learning with innovative, cutting-edge, techniques About This Book Fully-coded working examples using a wide range of machine learning libraries and tools, including Python, R, Julia, and Spark Comprehensive practical solutions taking you into the future of machine learning Go a step further and integrate your machine learning projects with Hadoop Who This Book Is For This book has been created for data scientists who want to see machine learning in action and explore its real-world application. With guidance on everything from the fundamentals of machine learning and predictive analytics to the latest innovations set to lead the big data revolution into the future, this is an unmissable resource for anyone dedicated to tackling current big data challenges. Knowledge of programming (Python and R) and mathematics is advisable if you want to get started immediately. What You Will Learn Implement a wide range of algorithms and techniques for tackling complex data Get to grips with some of the most powerful languages in data science, including R, Python, and Julia Harness the capabilities of Spark and Hadoop to manage and process data successfully Apply the appropriate machine learning technique to address real-world problems Get acquainted with Deep learning and find out how neural networks are being used at the cutting-edge of machine learning Explore the future of machine learning and dive deeper into polyglot persistence, semantic data, and more In Detail Finding meaning in increasingly larger and more complex datasets is a growing demand of the modern world. Machine learning and predictive analytics have become the most important approaches to uncover data gold mines. Machine learning uses complex algorithms to make improved predictions of outcomes based on historical patterns and the behaviour of data sets. Machine learning can deliver dynamic insights into trends, patterns, and relationships within data, immensely valuable to business growth and development. This book explores an extensive range of machine learning techniques uncovering hidden tricks and tips for several types of data using practical and real-world examples. While machine learning can be highly theoretical, this book offers a refreshing hands-on approach without losing sight of the underlying principles. Inside, a full exploration of the various algorithms gives you high-quality guidance so you can begin to see just how effective machine learning is at tackling contemporary challenges of big data. This is the only book you need to implement a whole suite of open source tools, frameworks, and languages in machine learning. We will cover the leading data science languages, Python and R, and the underrated but powerful Julia, as well as a range of other big data platforms including Spark, Hadoop, and Mahout. Practical Machine Learning is an essential resource for the modern data scientists who want to get to grips with its real-world application. With this book, you will not only learn the fundamentals of machine learning but dive deep into the complexities of real world data before moving on to using Hadoop and its wider ecosystem of tools to process and manage your structured and unstructured data. You will explore different machine learning techniques for both supervised and unsupervised learning; from decision trees to Naive Bayes classifiers and linear and clustering methods, you will learn strategies for a truly advanced approach to the statistical analysis of data. The book also explores the cutting-edge advancements in machine learning, with worked examples and guidance on deep learning and reinforcement learning, providing you with practical demonstrations and samples that help take the theory–and mystery–out of even the most advanced machine learning methodologies. Style and approach A practical data science tutorial designed to give you an insight into the practical application of machine learning, this book takes you through complex concepts and tasks in an accessible way. Featuring information on a wide range of data science techniques, Practical Machine Learning is a comprehensive data science resource.

Beginning Julia Programming

Download Beginning Julia Programming PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484231716
Total Pages : 359 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Beginning Julia Programming by : Sandeep Nagar

Download or read book Beginning Julia Programming written by Sandeep Nagar and published by Apress. This book was released on 2017-11-25 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get started with Julia for engineering and numerical computing, especially data science, machine learning, and scientific computing applications. This book explains how Julia provides the functionality, ease-of-use and intuitive syntax of R, Python, MATLAB, SAS, or Stata combined with the speed, capacity, and performance of C, C++, or Java. You’ll learn the OOP principles required to get you started, then how to do basic mathematics with Julia. Other core functionality of Julia that you’ll cover, includes working with complex numbers, rational and irrational numbers, rings, and fields. Beginning Julia Programming takes you beyond these basics to harness Julia’s powerful features for mathematical functions in Julia, arrays for matrix operations, plotting, and more. Along the way, you also learn how to manage strings, write functions, work with control flows, and carry out I/O to implement and leverage the mathematics needed for your data science and analysis projects. "Julia walks like Python and runs like C". This phrase explains why Julia is quickly growing as the most favored option for data analytics and numerical computation. After reading and using this book, you'll have the essential knowledge and skills to build your first Julia-based application. What You'll Learn Obtain core skills in Julia Apply Julia in engineering and science applications Work with mathematical functions in Julia Use arrays, strings, functions, control flow, and I/O in Julia Carry out plotting and display basic graphics Who This Book Is For Those who are new to Julia; experienced users may also find this helpful as a reference.

Julia for Data Science

Download Julia for Data Science PDF Online Free

Author :
Publisher :
ISBN 13 : 9781634621304
Total Pages : 0 pages
Book Rating : 4.6/5 (213 download)

DOWNLOAD NOW!


Book Synopsis Julia for Data Science by : Zacharias Voulgaris

Download or read book Julia for Data Science written by Zacharias Voulgaris and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: After covering the importance of Julia to the data science community and several essential data science principles, we start with the basics including how to install Julia and its powerful libraries. Many examples are provided as we illustrate how to leverage each Julia command, dataset, and function. Specialized script packages are introduced and described. Hands-on problems representative of those commonly encountered throughout the data science pipeline are provided, and we guide you in the use of Julia in solving them using published datasets. Many of these scenarios make use of existing packages and built-in functions, as we cover: An overview of the data science pipeline along with an example illustrating the key points, implemented in Julia Options for Julia IDEs Programming structures and functions Engineering tasks, such as importing, cleaning, formatting and storing data, as well as performing data preprocessing Data visualization and some simple yet powerful statistics for data exploration purposes Dimensionality reduction and feature evaluation Machine learning methods, ranging from unsupervised (different types of clustering) to supervised ones (decision trees, random forests, basic neural networks, regression trees, and Extreme Learning Machines) Graph analysis including pinpointing the connections among the various entities and how they can be mined for useful insights. Each chapter concludes with a series of questions and exercises to reinforce what you learned. The last chapter of the book will guide you in creating a data science application from scratch using Julia.

Learning Julia

Download Learning Julia PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785885367
Total Pages : 308 pages
Book Rating : 4.7/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Learning Julia by : Anshul Joshi

Download or read book Learning Julia written by Anshul Joshi and published by Packt Publishing Ltd. This book was released on 2017-11-24 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn Julia language for data science and data analytics About This Book Set up Julia's environment and start building simple programs Explore the technical aspects of Julia and its potential when it comes to speed and data processing Write efficient and high-quality code in Julia Who This Book Is For This book allows existing programmers, statisticians and data scientists to learn the Julia and take its advantage while building applications with complex numerical and scientific computations. Basic knowledge of mathematics is needed to understand the various methods that will be used or created in the book to exploit the capabilities for which Julia is made. What You Will Learn Understand Julia's ecosystem and create simple programs Master the type system and create your own types in Julia Understand Julia's type system, annotations, and conversions Define functions and understand meta-programming and multiple dispatch Create graphics and data visualizations using Julia Build programs capable of networking and parallel computation Develop real-world applications and use connections for RDBMS and NoSQL Learn to interact with other programming languages–C and Python—using Julia In Detail Julia is a highly appropriate language for scientific computing, but it comes with all the required capabilities of a general-purpose language. It allows us to achieve C/Fortran-like performance while maintaining the concise syntax of a scripting language such as Python. It is perfect for building high-performance and concurrent applications. From the basics of its syntax to learning built-in object types, this book covers it all. This book shows you how to write effective functions, reduce code redundancies, and improve code reuse. It will be helpful for new programmers who are starting out with Julia to explore its wide and ever-growing package ecosystem and also for experienced developers/statisticians/data scientists who want to add Julia to their skill-set. The book presents the fundamentals of programming in Julia and in-depth informative examples, using a step-by-step approach. You will be taken through concepts and examples such as doing simple mathematical operations, creating loops, metaprogramming, functions, collections, multiple dispatch, and so on. By the end of the book, you will be able to apply your skills in Julia to create and explore applications of any domain. Style and approach This book demonstrates the basics of Julia along with some data structures and testing tools that will give you enough material to get started with the language from an application standpoint.

Julia High Performance

Download Julia High Performance PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785887823
Total Pages : 132 pages
Book Rating : 4.7/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Julia High Performance by : Avik Sengupta

Download or read book Julia High Performance written by Avik Sengupta and published by Packt Publishing Ltd. This book was released on 2016-04-26 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design and develop high performing programs with Julia About This Book Learn to code high reliability and high performance programs Stand out from the crowd by developing code that runs faster than your peers' codes This book is intended for developers who are interested in high performance technical programming. Who This Book Is For This book is for beginner and intermediate Julia programmers who are interested in high performance technical computing. You will have a basic familiarity with Julia syntax, and have written some small programs in the language. What You Will Learn Discover the secrets behind Julia's speed Get a sense of the possibilities and limitations of Julia's performance Analyze the performance of Julia programs Measure the time and memory taken by Julia programs Create fast machine code using Julia's type information Define and call functions without compromising Julia's performance Understand number types in Julia Use Julia arrays to write high performance code Get an overview of Julia's distributed computing capabilities In Detail Julia is a high performance, high-level dynamic language designed to address the requirements of high-level numerical and scientific computing. Julia brings solutions to the complexities faced by developers while developing elegant and high performing code. Julia High Performance will take you on a journey to understand the performance characteristics of your Julia programs, and enables you to utilize the promise of near C levels of performance in Julia. You will learn to analyze and measure the performance of Julia code, understand how to avoid bottlenecks, and design your program for the highest possible performance. In this book, you will also see how Julia uses type information to achieve its performance goals, and how to use multuple dispatch to help the compiler to emit high performance machine code. Numbers and their arrays are obviously the key structures in scientific computing – you will see how Julia's design makes them fast. The last chapter will give you a taste of Julia's distributed computing capabilities. Style and approach This is a hands-on manual that will give you good explanations about the important concepts related to Julia programming.

Wilma Jean the Worry Machine

Download Wilma Jean the Worry Machine PDF Online Free

Author :
Publisher : National Center for Youth Issues
ISBN 13 : 1937870898
Total Pages : 33 pages
Book Rating : 4.9/5 (378 download)

DOWNLOAD NOW!


Book Synopsis Wilma Jean the Worry Machine by : Julia Cook

Download or read book Wilma Jean the Worry Machine written by Julia Cook and published by National Center for Youth Issues. This book was released on 2012-01-15 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt: "My stomach feels like it's tied up in a knot. My knees lock up, and my face feels hot. You know what I mean? I'm Wilma Jean, The Worry Machine." Anxiety is a subjective sense of worry, apprehension, and/or fear. It is considered to be the number one health problem in America. Although quite common, anxiety disorders in children are often misdiagnosed and overlooked. Everyone feels fear, worry and apprehension from time to time, but when these feelings prevent a person from doing what he/she wants and/or needs to do, anxiety becomes a disability. This fun and humorous book addresses the problem of anxiety in a way that relates to children of all ages. It offers creative strategies for parents and teachers to use that can lessen the severity of anxiety. The goal of the book is to give children the tools needed to feel more in control of their anxiety. For those worries that are not in anyone's control (i.e. the weather) a worry hat is introduced. A fun read for Wilmas of all ages! Includes a note to parents and educators with tips on dealing with an anxious child.

Julia Cookbook

Download Julia Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785883631
Total Pages : 167 pages
Book Rating : 4.7/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Julia Cookbook by : Jalem Raj Rohit

Download or read book Julia Cookbook written by Jalem Raj Rohit and published by Packt Publishing Ltd. This book was released on 2016-09-30 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 40 recipes to get you up and running with programming using Julia About This Book Follow a practical approach to learn Julia programming the easy way Get an extensive coverage of Julia's packages for statistical analysis This recipe-based approach will help you get familiar with the key concepts in Juli Who This Book Is For This book is for data scientists and data analysts who are familiar with the basics of the Julia language. Prior experience of working with high-level languages such as MATLAB, Python, R, or Ruby is expected. What You Will Learn Extract and handle your data with Julia Uncover the concepts of metaprogramming in Julia Conduct statistical analysis with StatsBase.jl and Distributions.jl Build your data science models Find out how to visualize your data with Gadfly Explore big data concepts in Julia In Detail Want to handle everything that Julia can throw at you and get the most of it every day? This practical guide to programming with Julia for performing numerical computation will make you more productive and able work with data more efficiently. The book starts with the main features of Julia to help you quickly refresh your knowledge of functions, modules, and arrays. We'll also show you how to utilize the Julia language to identify, retrieve, and transform data sets so you can perform data analysis and data manipulation. Later on, you'll see how to optimize data science programs with parallel computing and memory allocation. You'll get familiar with the concepts of package development and networking to solve numerical problems using the Julia platform. This book includes recipes on identifying and classifying data science problems, data modelling, data analysis, data manipulation, meta-programming, multidimensional arrays, and parallel computing. By the end of the book, you will acquire the skills to work more effectively with your data. Style and approach This book has a recipe-based approach to help you grasp the concepts of Julia programming.

Probabilistic Machine Learning

Download Probabilistic Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262369303
Total Pages : 858 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Machine Learning by : Kevin P. Murphy

Download or read book Probabilistic Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2022-03-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Democratizing Our Data

Download Democratizing Our Data PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262542749
Total Pages : 187 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Democratizing Our Data by : Julia Lane

Download or read book Democratizing Our Data written by Julia Lane and published by MIT Press. This book was released on 2021-10-19 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wake-up call for America to create a new framework for democratizing data. Public data are foundational to our democratic system. People need consistently high-quality information from trustworthy sources. In the new economy, wealth is generated by access to data; government's job is to democratize the data playing field. Yet data produced by the American government are getting worse and costing more. In Democratizing Our Data, Julia Lane argues that good data are essential for democracy. Her book is a wake-up call to America to fix its broken public data system.

Numerical Methods for Scientific Computing

Download Numerical Methods for Scientific Computing PDF Online Free

Author :
Publisher : Equal Share Press
ISBN 13 :
Total Pages : 710 pages
Book Rating : 4.9/5 (854 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Scientific Computing by : Kyle Novak

Download or read book Numerical Methods for Scientific Computing written by Kyle Novak and published by Equal Share Press. This book was released on 2022-03-13 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the theory, intuition, and application of numerical methods in linear algebra, analysis, and differential equations. With extensive commentary and code for three essential scientific computing languages: Julia, Python, and Matlab.