Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Iterated Function Systems Moments And Transformations Of Infinite Matrices
Download Iterated Function Systems Moments And Transformations Of Infinite Matrices full books in PDF, epub, and Kindle. Read online Iterated Function Systems Moments And Transformations Of Infinite Matrices ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Iterated Function Systems, Moments, and Transformations of Infinite Matrices by : Palle E. T. Jørgensen
Download or read book Iterated Function Systems, Moments, and Transformations of Infinite Matrices written by Palle E. T. Jørgensen and published by American Mathematical Soc.. This book was released on 2011 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors study the moments of equilibrium measures for iterated function systems (IFSs) and draw connections to operator theory. Their main object of study is the infinite matrix which encodes all the moment data of a Borel measure on $\mathbb{R}^d$ or $\mathbb{C}$. To encode the salient features of a given IFS into precise moment data, they establish an interdependence between IFS equilibrium measures, the encoding of the sequence of moments of these measures into operators, and a new correspondence between the IFS moments and this family of operators in Hilbert space. For a given IFS, the authors' aim is to establish a functorial correspondence in such a way that the geometric transformations of the IFS turn into transformations of moment matrices, or rather transformations of the operators that are associated with them.
Book Synopsis Recent Developments in Fractal Geometry and Dynamical Systems by : Sangita Jha
Download or read book Recent Developments in Fractal Geometry and Dynamical Systems written by Sangita Jha and published by American Mathematical Society. This book was released on 2024-04-18 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the virtual AMS Special Session on Fractal Geometry and Dynamical Systems, held from May 14–15, 2022. The content covers a wide range of topics. It includes nonautonomous dynamics of complex polynomials, theory and applications of polymorphisms, topological and geometric problems related to dynamical systems, and also covers fractal dimensions, including the Hausdorff dimension of fractal interpolation functions. Furthermore, the book contains a discussion of self-similar measures as well as the theory of IFS measures associated with Bratteli diagrams. This book is suitable for graduate students interested in fractal theory, researchers interested in fractal geometry and dynamical systems, and anyone interested in the application of fractals in science and engineering. This book also offers a valuable resource for researchers working on applications of fractals in different fields.
Book Synopsis The Hermitian Two Matrix Model with an Even Quartic Potential by : Maurice Duits
Download or read book The Hermitian Two Matrix Model with an Even Quartic Potential written by Maurice Duits and published by American Mathematical Soc.. This book was released on 2012 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors consider the two matrix model with an even quartic potential $W(y)=y^4/4+\alpha y^2/2$ and an even polynomial potential $V(x)$. The main result of the paper is the formulation of a vector equilibrium problem for the limiting mean density for the eigenvalues of one of the matrices $M_1$. The vector equilibrium problem is defined for three measures, with external fields on the first and third measures and an upper constraint on the second measure. The proof is based on a steepest descent analysis of a $4\times4$ matrix valued Riemann-Hilbert problem that characterizes the correlation kernel for the eigenvalues of $M_1$. The authors' results generalize earlier results for the case $\alpha=0$, where the external field on the third measure was not present.
Book Synopsis Parabolic Systems with Polynomial Growth and Regularity by : Frank Duzaar
Download or read book Parabolic Systems with Polynomial Growth and Regularity written by Frank Duzaar and published by American Mathematical Soc.. This book was released on 2011 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors establish a series of optimal regularity results for solutions to general non-linear parabolic systems $ u_t- \mathrm{div} \ a(x,t,u,Du)+H=0,$ under the main assumption of polynomial growth at rate $p$ i.e. $ a(x,t,u,Du) \leq L(1+ Du ^{p-1}), p \geq 2.$ They give a unified treatment of various interconnected aspects of the regularity theory: optimal partial regularity results for the spatial gradient of solutions, the first estimates on the (parabolic) Hausdorff dimension of the related singular set, and the first Calderon-Zygmund estimates for non-homogeneous problems are achieved here.
Book Synopsis Vector Bundles on Degenerations of Elliptic Curves and Yang-Baxter Equations by : Igor Burban
Download or read book Vector Bundles on Degenerations of Elliptic Curves and Yang-Baxter Equations written by Igor Burban and published by American Mathematical Soc.. This book was released on 2012 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: "November 2012, volume 220, number 1035 (third of 4 numbers)."
Book Synopsis On $L$-Packets for Inner Forms of $SL_n$ by : Kaoru Hiraga
Download or read book On $L$-Packets for Inner Forms of $SL_n$ written by Kaoru Hiraga and published by American Mathematical Soc.. This book was released on 2012 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of $L$-indistinguishability for inner forms of $SL_2$ has been established in the well-known paper of Labesse and Langlands (L-indistinguishability forSL$(2)$. Canad. J. Math. 31 (1979), no. 4, 726-785). In this memoir, the authors study $L$-indistinguishability for inner forms of $SL_n$ for general $n$. Following the idea of Vogan in (The local Langlands conjecture. Representation theory of groups and algebras, 305-379, Contemp. Math. 145 (1993)), they modify the $S$-group and show that such an $S$-group fits well in the theory of endoscopy for inner forms of $SL_n$.
Book Synopsis Modular Branching Rules for Projective Representations of Symmetric Groups and Lowering Operators for the Supergroup $Q(n)$ by : Aleksandr Sergeevich Kleshchëv
Download or read book Modular Branching Rules for Projective Representations of Symmetric Groups and Lowering Operators for the Supergroup $Q(n)$ written by Aleksandr Sergeevich Kleshchëv and published by American Mathematical Soc.. This book was released on 2012 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are two approaches to projective representation theory of symmetric and alternating groups, which are powerful enough to work for modular representations. One is based on Sergeev duality, which connects projective representation theory of the symmetric group and representation theory of the algebraic supergroup $Q(n)$ via appropriate Schur (super)algebras and Schur functors. The second approach follows the work of Grojnowski for classical affine and cyclotomic Hecke algebras and connects projective representation theory of symmetric groups in characteristic $p$ to the crystal graph of the basic module of the twisted affine Kac-Moody algebra of type $A_{p-1}^{(2)}$. The goal of this work is to connect the two approaches mentioned above and to obtain new branching results for projective representations of symmetric groups.
Book Synopsis Chevalley Supergroups by : Rita Fioresi
Download or read book Chevalley Supergroups written by Rita Fioresi and published by American Mathematical Soc.. This book was released on 2012 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the framework of algebraic supergeometry, the authors give a construction of the scheme-theoretic supergeometric analogue of split reductive algebraic group-schemes, namely affine algebraic supergroups associated to simple Lie superalgebras of classical type. In particular, all Lie superalgebras of both basic and strange types are considered. This provides a unified approach to most of the algebraic supergroups considered so far in the literature, and an effective method to construct new ones. The authors' method follows the pattern of a suitable scheme-theoretic revisitation of Chevalley's construction of semisimple algebraic groups, adapted to the reductive case. As an intermediate step, they prove an existence theorem for Chevalley bases of simple classical Lie superalgebras and a PBW-like theorem for their associated Kostant superalgebras.
Book Synopsis On the Algebraic Foundations of Bounded Cohomology by : Theo Bühler
Download or read book On the Algebraic Foundations of Bounded Cohomology written by Theo Bühler and published by American Mathematical Soc.. This book was released on 2011 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is a widespread opinion among experts that (continuous) bounded cohomology cannot be interpreted as a derived functor and that triangulated methods break down. The author proves that this is wrong. He uses the formalism of exact categories and their derived categories in order to construct a classical derived functor on the category of Banach $G$-modules with values in Waelbroeck's abelian category. This gives us an axiomatic characterization of this theory for free, and it is a simple matter to reconstruct the classical semi-normed cohomology spaces out of Waelbroeck's category. The author proves that the derived categories of right bounded and of left bounded complexes of Banach $G$-modules are equivalent to the derived category of two abelian categories (one for each boundedness condition), a consequence of the theory of abstract truncation and hearts of $t$-structures. Moreover, he proves that the derived categories of Banach $G$-modules can be constructed as the homotopy categories of model structures on the categories of chain complexes of Banach $G$-modules, thus proving that the theory fits into yet another standard framework of homological and homotopical algebra.
Book Synopsis Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees by : Lee Mosher
Download or read book Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees written by Lee Mosher and published by American Mathematical Soc.. This book was released on 2011 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. The main theorem says that, under certain hypotheses, if $\mathcal{G}$ is a finite graph of coarse Poincare duality groups, then any finitely generated group quasi-isometric to the fundamental group of $\mathcal{G}$ is also the fundamental group of a finite graph of coarse Poincare duality groups, and any quasi-isometry between two such groups must coarsely preserve the vertex and edge spaces of their Bass-Serre trees of spaces. Besides some simple normalization hypotheses, the main hypothesis is the ``crossing graph condition'', which is imposed on each vertex group $\mathcal{G}_v$ which is an $n$-dimensional coarse Poincare duality group for which every incident edge group has positive codimension: the crossing graph of $\mathcal{G}_v$ is a graph $\epsilon_v$ that describes the pattern in which the codimension 1 edge groups incident to $\mathcal{G}_v$ are crossed by other edge groups incident to $\mathcal{G}_v$, and the crossing graph condition requires that $\epsilon_v$ be connected or empty.
Book Synopsis Jumping Numbers of a Simple Complete Ideal in a Two-Dimensional Regular Local Ring by : Tarmo Järvilehto
Download or read book Jumping Numbers of a Simple Complete Ideal in a Two-Dimensional Regular Local Ring written by Tarmo Järvilehto and published by American Mathematical Soc.. This book was released on 2011 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: The multiplier ideals of an ideal in a regular local ring form a family of ideals parameterized by non-negative rational numbers. As the rational number increases the corresponding multiplier ideal remains unchanged until at some point it gets strictly smaller. A rational number where this kind of diminishing occurs is called a jumping number of the ideal. In this manuscript the author gives an explicit formula for the jumping numbers of a simple complete ideal in a two-dimensional regular local ring. In particular, he obtains a formula for the jumping numbers of an analytically irreducible plane curve. He then shows that the jumping numbers determine the equisingularity class of the curve.
Book Synopsis Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates by : Steve Hofmann
Download or read book Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates written by Steve Hofmann and published by American Mathematical Soc.. This book was released on 2011 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $X$ be a metric space with doubling measure, and $L$ be a non-negative, self-adjoint operator satisfying Davies-Gaffney bounds on $L^2(X)$. In this article the authors present a theory of Hardy and BMO spaces associated to $L$, including an atomic (or molecular) decomposition, square function characterization, and duality of Hardy and BMO spaces. Further specializing to the case that $L$ is a Schrodinger operator on $\mathbb{R}^n$ with a non-negative, locally integrable potential, the authors establish additional characterizations of such Hardy spaces in terms of maximal functions. Finally, they define Hardy spaces $H^p_L(X)$ for $p>1$, which may or may not coincide with the space $L^p(X)$, and show that they interpolate with $H^1_L(X)$ spaces by the complex method.
Book Synopsis A von Neumann Algebra Approach to Quantum Metrics/Quantum Relations by : Greg Kuperberg
Download or read book A von Neumann Algebra Approach to Quantum Metrics/Quantum Relations written by Greg Kuperberg and published by American Mathematical Soc.. This book was released on 2012 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: In A von Neumann Algebra Approach to Quantum Metrics, Kuperberg and Weaver propose a new definition of quantum metric spaces, or W*-metric spaces, in the setting of von Neumann algebras. Their definition effectively reduces to the classical notion in the atomic abelian case, has both concrete and intrinsic characterizations, and admits a wide variety of tractable examples. A natural application and motivation of their theory is a mutual generalization of the standard models of classical and quantum error correction. In Quantum Relations Weaver defines a ``quantum relation'' on a von Neumann algebra $\mathcal{M}\subseteq\mathcal{B}(H)$ to be a weak* closed operator bimodule over its commutant $\mathcal{M}'$. Although this definition is framed in terms of a particular representation of $\mathcal{M}$, it is effectively representation independent. Quantum relations on $l^\infty(X)$ exactly correspond to subsets of $X^2$, i.e., relations on $X$. There is also a good definition of a ``measurable relation'' on a measure space, to which quantum relations partially reduce in the general abelian case. By analogy with the classical setting, Weaver can identify structures such as quantum equivalence relations, quantum partial orders, and quantum graphs, and he can generalize Arveson's fundamental work on weak* closed operator algebras containing a masa to these cases. He is also able to intrinsically characterize the quantum relations on $\mathcal{M}$ in terms of families of projections in $\mathcal{M}{\overline{\otimes}} \mathcal{B}(l^2)$.
Book Synopsis Dimer Models and Calabi-Yau Algebras by : Nathan Broomhead
Download or read book Dimer Models and Calabi-Yau Algebras written by Nathan Broomhead and published by American Mathematical Soc.. This book was released on 2012-01-23 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this article the author uses techniques from algebraic geometry and homological algebra, together with ideas from string theory to construct a class of 3-dimensional Calabi-Yau algebras. The Calabi-Yau property appears throughout geometry and string theory and is increasingly being studied in algebra. He further shows that the algebras constructed are examples of non-commutative crepant resolutions (NCCRs), in the sense of Van den Bergh, of Gorenstein affine toric threefolds. Dimer models, first studied in theoretical physics, give a way of writing down a class of non-commutative algebras, as the path algebra of a quiver with relations obtained from a `superpotential'. Some examples are Calabi-Yau and some are not. The author considers two types of `consistency' conditions on dimer models, and shows that a `geometrically consistent' dimer model is `algebraically consistent'. He proves that the algebras obtained from algebraically consistent dimer models are 3-dimensional Calabi-Yau algebras. This is the key step which allows him to prove that these algebras are NCCRs of the Gorenstein affine toric threefolds associated to the dimer models.
Book Synopsis Multicurves and Equivariant Cohomology by : Neil P. Strickland
Download or read book Multicurves and Equivariant Cohomology written by Neil P. Strickland and published by American Mathematical Soc.. This book was released on 2011 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $A$ be a finite abelian group. The author sets up an algebraic framework for studying $A$-equivariant complex-orientable cohomology theories in terms of a suitable kind of equivariant formal group. He computes the equivariant cohomology of many spaces in these terms, including projective bundles (and associated Gysin maps), Thom spaces, and infinite Grassmannians.
Book Synopsis The Schrodinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p,q)$ by : Toshiyuki Kobayashi
Download or read book The Schrodinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p,q)$ written by Toshiyuki Kobayashi and published by American Mathematical Soc.. This book was released on 2011 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors introduce a generalization of the Fourier transform, denoted by $\mathcal{F}_C$, on the isotropic cone $C$ associated to an indefinite quadratic form of signature $(n_1,n_2)$ on $\mathbb{R}^n$ ($n=n_1+n_2$: even). This transform is in some sense the unique and natural unitary operator on $L^2(C)$, as is the case with the Euclidean Fourier transform $\mathcal{F}_{\mathbb{R}^n}$ on $L^2(\mathbb{R}^n)$. Inspired by recent developments of algebraic representation theory of reductive groups, the authors shed new light on classical analysis on the one hand, and give the global formulas for the $L^2$-model of the minimal representation of the simple Lie group $G=O(n_1+1,n_2+1)$ on the other hand.