Bulletin of the Atomic Scientists

Download Bulletin of the Atomic Scientists PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 88 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Bulletin of the Atomic Scientists by :

Download or read book Bulletin of the Atomic Scientists written by and published by . This book was released on 1961-05 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.

Measure Theory and Probability Theory

Download Measure Theory and Probability Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038732903X
Total Pages : 625 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Measure Theory and Probability Theory by : Krishna B. Athreya

Download or read book Measure Theory and Probability Theory written by Krishna B. Athreya and published by Springer Science & Business Media. This book was released on 2006-07-27 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.

Discrete Choice Methods with Simulation

Download Discrete Choice Methods with Simulation PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521766559
Total Pages : 399 pages
Book Rating : 4.5/5 (217 download)

DOWNLOAD NOW!


Book Synopsis Discrete Choice Methods with Simulation by : Kenneth Train

Download or read book Discrete Choice Methods with Simulation written by Kenneth Train and published by Cambridge University Press. This book was released on 2009-07-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.

Statistical Foundations of Data Science

Download Statistical Foundations of Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429527616
Total Pages : 974 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Statistical Foundations of Data Science by : Jianqing Fan

Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 974 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

Single Station Analysis and Forecasting Techniques

Download Single Station Analysis and Forecasting Techniques PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 212 pages
Book Rating : 4.E/5 ( download)

DOWNLOAD NOW!


Book Synopsis Single Station Analysis and Forecasting Techniques by : United States. Navy Department. Bureau of Aeronautics

Download or read book Single Station Analysis and Forecasting Techniques written by United States. Navy Department. Bureau of Aeronautics and published by . This book was released on 1955 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Handbook, Single Station Analysis and Forecasting Techniques

Download Handbook, Single Station Analysis and Forecasting Techniques PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 204 pages
Book Rating : 4.:/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Handbook, Single Station Analysis and Forecasting Techniques by : United States. Naval Weapons Bureau

Download or read book Handbook, Single Station Analysis and Forecasting Techniques written by United States. Naval Weapons Bureau and published by . This book was released on 1963 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Discrete Inverse and State Estimation Problems

Download Discrete Inverse and State Estimation Problems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139456938
Total Pages : 357 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Discrete Inverse and State Estimation Problems by : Carl Wunsch

Download or read book Discrete Inverse and State Estimation Problems written by Carl Wunsch and published by Cambridge University Press. This book was released on 2006-06-29 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addressing the problems of making inferences from noisy observations and imperfect theories, this 2006 book introduces many inference tools and practical applications. Starting with fundamental algebraic and statistical ideas, it is ideal for graduate students and researchers in oceanography, climate science, and geophysical fluid dynamics.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability

Download Assessment of Intraseasonal to Interannual Climate Prediction and Predictability PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 030915183X
Total Pages : 192 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Assessment of Intraseasonal to Interannual Climate Prediction and Predictability by : National Research Council

Download or read book Assessment of Intraseasonal to Interannual Climate Prediction and Predictability written by National Research Council and published by National Academies Press. This book was released on 2010-10-08 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: More accurate forecasts of climate conditions over time periods of weeks to a few years could help people plan agricultural activities, mitigate drought, and manage energy resources, amongst other activities; however, current forecast systems have limited ability on these time- scales. Models for such climate forecasts must take into account complex interactions among the ocean, atmosphere, and land surface. Such processes can be difficult to represent realistically. To improve the quality of forecasts, this book makes recommendations about the development of the tools used in forecasting and about specific research goals for improving understanding of sources of predictability. To improve the accessibility of these forecasts to decision-makers and researchers, this book also suggests best practices to improve how forecasts are made and disseminated.

Data Assimilation in Meteorology and Oceanography; Theory and Practice

Download Data Assimilation in Meteorology and Oceanography; Theory and Practice PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 428 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis Data Assimilation in Meteorology and Oceanography; Theory and Practice by : Nihon Kishō Gakkai

Download or read book Data Assimilation in Meteorology and Oceanography; Theory and Practice written by Nihon Kishō Gakkai and published by . This book was released on 1997 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Partially Linear Models

Download Partially Linear Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642577008
Total Pages : 210 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Partially Linear Models by : Wolfgang Härdle

Download or read book Partially Linear Models written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.

Meteorological and Geoastrophysical Abstracts

Download Meteorological and Geoastrophysical Abstracts PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1998 pages
Book Rating : 4.:/5 (319 download)

DOWNLOAD NOW!


Book Synopsis Meteorological and Geoastrophysical Abstracts by :

Download or read book Meteorological and Geoastrophysical Abstracts written by and published by . This book was released on 1961 with total page 1998 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Handbook of Probabilistic Models

Download Handbook of Probabilistic Models PDF Online Free

Author :
Publisher : Butterworth-Heinemann
ISBN 13 : 0128165464
Total Pages : 592 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Probabilistic Models by : Pijush Samui

Download or read book Handbook of Probabilistic Models written by Pijush Samui and published by Butterworth-Heinemann. This book was released on 2019-10-05 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems

Nonlinear Data Assimilation

Download Nonlinear Data Assimilation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319183478
Total Pages : 130 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Data Assimilation by : Peter Jan Van Leeuwen

Download or read book Nonlinear Data Assimilation written by Peter Jan Van Leeuwen and published by Springer. This book was released on 2015-07-22 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.

Practical Statistics for Data Scientists

Download Practical Statistics for Data Scientists PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491952911
Total Pages : 322 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Practical Statistics for Data Scientists by : Peter Bruce

Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Statistics for High-Dimensional Data

Download Statistics for High-Dimensional Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364220192X
Total Pages : 568 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Statistics for High-Dimensional Data by : Peter Bühlmann

Download or read book Statistics for High-Dimensional Data written by Peter Bühlmann and published by Springer Science & Business Media. This book was released on 2011-06-08 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

High-Dimensional Covariance Estimation

Download High-Dimensional Covariance Estimation PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118034295
Total Pages : 204 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Covariance Estimation by : Mohsen Pourahmadi

Download or read book High-Dimensional Covariance Estimation written by Mohsen Pourahmadi and published by John Wiley & Sons. This book was released on 2013-06-24 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.

Next Generation Earth System Prediction

Download Next Generation Earth System Prediction PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309388805
Total Pages : 351 pages
Book Rating : 4.3/5 (93 download)

DOWNLOAD NOW!


Book Synopsis Next Generation Earth System Prediction by : National Academies of Sciences, Engineering, and Medicine

Download or read book Next Generation Earth System Prediction written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2016-08-22 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.