Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Introduction To Combinatorial Methods In Geometry
Download Introduction To Combinatorial Methods In Geometry full books in PDF, epub, and Kindle. Read online Introduction To Combinatorial Methods In Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Introduction to Combinatorial Methods in Geometry by : Alexander Kharazishvili
Download or read book Introduction to Combinatorial Methods in Geometry written by Alexander Kharazishvili and published by CRC Press. This book was released on 2024-05-07 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to some combinatorial (also, set-theoretical) approaches and methods in geometry of the Euclidean space Rm. The topics discussed in the manuscript are due to the field of combinatorial and convex geometry. The author’s primary intention is to discuss those themes of Euclidean geometry which might be of interest to a sufficiently wide audience of potential readers. Accordingly, the material is explained in a simple and elementary form completely accessible to the college and university students. At the same time, the author reveals profound interactions between various facts and statements from different areas of mathematics: the theory of convex sets, finite and infinite combinatorics, graph theory, measure theory, classical number theory, etc. All chapters (and also the five Appendices) end with a number of exercises. These provide the reader with some additional information about topics considered in the main text of this book. Naturally, the exercises vary in their difficulty. Among them there are almost trivial, standard, nontrivial, rather difficult, and difficult. As a rule, more difficult exercises are marked by asterisks and are provided with necessary hints. The material presented is based on the lecture course given by the author. The choice of material serves to demonstrate the unity of mathematics and variety of unexpected interrelations between distinct mathematical branches.
Book Synopsis Combinatorial Geometry by : János Pach
Download or read book Combinatorial Geometry written by János Pach and published by John Wiley & Sons. This book was released on 2011-10-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete, self-contained introduction to a powerful and resurgingmathematical discipline . Combinatorial Geometry presents andexplains with complete proofs some of the most important resultsand methods of this relatively young mathematical discipline,started by Minkowski, Fejes Toth, Rogers, and Erd???s. Nearly halfthe results presented in this book were discovered over the pasttwenty years, and most have never before appeared in any monograph.Combinatorial Geometry will be of particular interest tomathematicians, computer scientists, physicists, and materialsscientists interested in computational geometry, robotics, sceneanalysis, and computer-aided design. It is also a superb textbook,complete with end-of-chapter problems and hints to their solutionsthat help students clarify their understanding and test theirmastery of the material. Topics covered include: * Geometric number theory * Packing and covering with congruent convex disks * Extremal graph and hypergraph theory * Distribution of distances among finitely many points * Epsilon-nets and Vapnik--Chervonenkis dimension * Geometric graph theory * Geometric discrepancy theory * And much more
Book Synopsis Combinatorial Methods by : Alexander Mikhalev
Download or read book Combinatorial Methods written by Alexander Mikhalev and published by Springer Science & Business Media. This book was released on 2004 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology in the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras).
Book Synopsis Geometric Combinatorics by : Ezra Miller
Download or read book Geometric Combinatorics written by Ezra Miller and published by American Mathematical Soc.. This book was released on 2007 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric combinatorics describes a wide area of mathematics that is primarily the study of geometric objects and their combinatorial structure. This text is a compilation of expository articles at the interface between combinatorics and geometry.
Book Synopsis Introduction to Combinatorial Methods in Geometry by : Alexander Kharazishvili
Download or read book Introduction to Combinatorial Methods in Geometry written by Alexander Kharazishvili and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The author's primary intention is to discuss those themes of Euclidean geometry which might be of interest to a sufficiently wide audience of potential readers. Accordingly, the material is explained in a simple and elementary form completely accessible to the college and university students. At the same time, the author reveals profound interactions between various facts and statements from different areas of mathematics: the theory of convex sets, finite and infinite combinatorics, graph theory, measure theory, classical number theory, etc. All chapters (and also the five Appendixes) end with a number of exercises. These provide the reader with some additional information about topics considered in the main text of this book. Naturally, the exercises vary in their difficulty. Among them there are almost trivial, standard, nontrivial, rather difficult, and difficult. As a rule, more or less difficult exercises are marked by asterisks and are provided with necessary hints. The material presented is based on the lecture course given by the author. The choice of material serves to demonstrate the unity of mathematics and variety of unexpected interrelations between distinct mathematical branches"--
Book Synopsis Introduction to Combinatorics by : Martin J. Erickson
Download or read book Introduction to Combinatorics written by Martin J. Erickson and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This gradual, systematic introduction to the main concepts of combinatorics is the ideal text for advanced undergraduate and early graduate courses in this subject. Each of the book's three sections--Existence, Enumeration, and Construction--begins with a simply stated first principle, which is then developed step by step until it leads to one of the three major achievements of combinatorics: Van der Waerden's theorem on arithmetic progressions, Polya's graph enumeration formula, and Leech's 24-dimensional lattice. Along the way, Professor Martin J. Erickson introduces fundamental results, discusses interconnection and problem-solving techniques, and collects and disseminates open problems that raise new and innovative questions and observations. His carefully chosen end-of-chapter exercises demonstrate the applicability of combinatorial methods to a wide variety of problems, including many drawn from the William Lowell Putnam Mathematical Competition. Many important combinatorial methods are revisited several times in the course of the text--in exercises and examples as well as theorems and proofs. This repetition enables students to build confidence and reinforce their understanding of complex material. Mathematicians, statisticians, and computer scientists profit greatly from a solid foundation in combinatorics. Introduction to Combinatorics builds that foundation in an orderly, methodical, and highly accessible manner.
Book Synopsis Combinatorial Algebraic Geometry by : Gregory G. Smith
Download or read book Combinatorial Algebraic Geometry written by Gregory G. Smith and published by Springer. This book was released on 2017-11-17 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consolidates selected articles from the 2016 Apprenticeship Program at the Fields Institute, part of the larger program on Combinatorial Algebraic Geometry that ran from July through December of 2016. Written primarily by junior mathematicians, the articles cover a range of topics in combinatorial algebraic geometry including curves, surfaces, Grassmannians, convexity, abelian varieties, and moduli spaces. This book bridges the gap between graduate courses and cutting-edge research by connecting historical sources, computation, explicit examples, and new results.
Book Synopsis Combinatorial Algebraic Topology by : Dimitry Kozlov
Download or read book Combinatorial Algebraic Topology written by Dimitry Kozlov and published by Springer Science & Business Media. This book was released on 2008-01-08 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.
Book Synopsis Combinatorics: The Art of Counting by : Bruce E. Sagan
Download or read book Combinatorics: The Art of Counting written by Bruce E. Sagan and published by American Mathematical Soc.. This book was released on 2020-10-16 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Book Synopsis Lectures in Geometric Combinatorics by : Rekha R. Thomas
Download or read book Lectures in Geometric Combinatorics written by Rekha R. Thomas and published by American Mathematical Soc.. This book was released on 2006 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the statepolytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics. The connections rely on Grobner bases of toric ideals and other methods fromcommutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.
Book Synopsis Combinatorics by : Theodore G. Faticoni
Download or read book Combinatorics written by Theodore G. Faticoni and published by John Wiley & Sons. This book was released on 2014-08-21 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridges combinatorics and probability and uniquely includes detailed formulas and proofs to promote mathematical thinking Combinatorics: An Introduction introduces readers to counting combinatorics, offers examples that feature unique approaches and ideas, and presents case-by-case methods for solving problems. Detailing how combinatorial problems arise in many areas of pure mathematics, most notably in algebra, probability theory, topology, and geometry, this book provides discussion on logic and paradoxes; sets and set notations; power sets and their cardinality; Venn diagrams; the multiplication principal; and permutations, combinations, and problems combining the multiplication principal. Additional features of this enlightening introduction include: Worked examples, proofs, and exercises in every chapter Detailed explanations of formulas to promote fundamental understanding Promotion of mathematical thinking by examining presented ideas and seeing proofs before reaching conclusions Elementary applications that do not advance beyond the use of Venn diagrams, the inclusion/exclusion formula, the multiplication principal, permutations, and combinations Combinatorics: An Introduction is an excellent book for discrete and finite mathematics courses at the upper-undergraduate level. This book is also ideal for readers who wish to better understand the various applications of elementary combinatorics.
Book Synopsis Polynomial Methods in Combinatorics by : Larry Guth
Download or read book Polynomial Methods in Combinatorics written by Larry Guth and published by American Mathematical Soc.. This book was released on 2016-06-10 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book.
Book Synopsis Combinatorial Commutative Algebra by : Ezra Miller
Download or read book Combinatorial Commutative Algebra written by Ezra Miller and published by Springer Science & Business Media. This book was released on 2005-06-21 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Book Synopsis Crystal Bases: Representations And Combinatorics by : Daniel Bump
Download or read book Crystal Bases: Representations And Combinatorics written by Daniel Bump and published by World Scientific Publishing Company. This book was released on 2017-01-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book provides the first introduction to crystal base theory from the combinatorial point of view. Crystal base theory was developed by Kashiwara and Lusztig from the perspective of quantum groups. Its power comes from the fact that it addresses many questions in representation theory and mathematical physics by combinatorial means. This book approaches the subject directly from combinatorics, building crystals through local axioms (based on ideas by Stembridge) and virtual crystals. It also emphasizes parallels between the representation theory of the symmetric and general linear groups and phenomena in combinatorics. The combinatorial approach is linked to representation theory through the analysis of Demazure crystals. The relationship of crystals to tropical geometry is also explained.
Book Synopsis Excursions into Combinatorial Geometry by : Vladimir Boltyanski
Download or read book Excursions into Combinatorial Geometry written by Vladimir Boltyanski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: siehe Werbetext.
Book Synopsis Geometric Group Theory by : Clara Löh
Download or read book Geometric Group Theory written by Clara Löh and published by Springer. This book was released on 2017-12-19 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Book Synopsis Analytic Combinatorics by : Philippe Flajolet
Download or read book Analytic Combinatorics written by Philippe Flajolet and published by Cambridge University Press. This book was released on 2009-01-15 with total page 825 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.