Introduction to Abstract Harmonic Analysis

Download Introduction to Abstract Harmonic Analysis PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486481239
Total Pages : 210 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Abstract Harmonic Analysis by : Lynn H. Loomis

Download or read book Introduction to Abstract Harmonic Analysis written by Lynn H. Loomis and published by Courier Corporation. This book was released on 2011-06-01 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Harmonic analysis is a branch of advanced mathematics with applications in such diverse areas as signal processing, medical imaging, and quantum mechanics. This classic monograph is the work of a prominent contributor to the field. Geared toward advanced undergraduates and graduate students, it focuses on methods related to Gelfand's theory of Banach algebra. 1953 edition"--

A Course in Abstract Harmonic Analysis

Download A Course in Abstract Harmonic Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498727158
Total Pages : 317 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis A Course in Abstract Harmonic Analysis by : Gerald B. Folland

Download or read book A Course in Abstract Harmonic Analysis written by Gerald B. Folland and published by CRC Press. This book was released on 2016-02-03 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Course in Abstract Harmonic Analysis is an introduction to that part of analysis on locally compact groups that can be done with minimal assumptions on the nature of the group. As a generalization of classical Fourier analysis, this abstract theory creates a foundation for a great deal of modern analysis, and it contains a number of elegant resul

Principles of Harmonic Analysis

Download Principles of Harmonic Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319057928
Total Pages : 330 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Principles of Harmonic Analysis by : Anton Deitmar

Download or read book Principles of Harmonic Analysis written by Anton Deitmar and published by Springer. This book was released on 2014-06-21 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it.

An Introduction to Harmonic Analysis

Download An Introduction to Harmonic Analysis PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 292 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Harmonic Analysis by : Yitzhak Katznelson

Download or read book An Introduction to Harmonic Analysis written by Yitzhak Katznelson and published by . This book was released on 1968 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to Abstract Harmonic Analysis

Download Introduction to Abstract Harmonic Analysis PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486282317
Total Pages : 210 pages
Book Rating : 4.4/5 (862 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Abstract Harmonic Analysis by : Lynn H. Loomis

Download or read book Introduction to Abstract Harmonic Analysis written by Lynn H. Loomis and published by Courier Corporation. This book was released on 2013-05-09 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a prominent figure in the field of harmonic analysis, this classic monograph is geared toward advanced undergraduates and graduate students and focuses on methods related to Gelfand's theory of Banach algebra. 1953 edition.

Abstract Harmonic Analysis of Continuous Wavelet Transforms

Download Abstract Harmonic Analysis of Continuous Wavelet Transforms PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540315527
Total Pages : 207 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Abstract Harmonic Analysis of Continuous Wavelet Transforms by : Hartmut Führ

Download or read book Abstract Harmonic Analysis of Continuous Wavelet Transforms written by Hartmut Führ and published by Springer. This book was released on 2005-01-17 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a – reasonably self-contained – exposition of Plancherel theory. Therefore, the volume can also be read as a problem-driven introduction to the Plancherel formula.

Introduction to Harmonic Analysis and Generalized Gelfand Pairs

Download Introduction to Harmonic Analysis and Generalized Gelfand Pairs PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110220202
Total Pages : 234 pages
Book Rating : 4.1/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Harmonic Analysis and Generalized Gelfand Pairs by : Gerrit van Dijk

Download or read book Introduction to Harmonic Analysis and Generalized Gelfand Pairs written by Gerrit van Dijk and published by Walter de Gruyter. This book was released on 2009-12-23 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as an introduction to harmonic analysis and generalized Gelfand pairs. Starting with the elementary theory of Fourier series and Fourier integrals, the author proceeds to abstract harmonic analysis on locally compact abelian groups and Gelfand pairs. Finally a more advanced theory of generalized Gelfand pairs is developed. This book is aimed at advanced undergraduates or beginning graduate students. The scope of the book is limited, with the aim of enabling students to reach a level suitable for starting PhD research. The main prerequisites for the book are elementary real, complex and functional analysis. In the later chapters, familiarity with some more advanced functional analysis is assumed, in particular with the spectral theory of (unbounded) self-adjoint operators on a Hilbert space. From the contents Fourier series Fourier integrals Locally compact groups Haar measures Harmonic analysis on locally compact abelian groups Theory and examples of Gelfand pairs Theory and examples of generalized Gelfand pairs

Introduction to the Representation Theory of Compact and Locally Compact Groups

Download Introduction to the Representation Theory of Compact and Locally Compact Groups PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521289750
Total Pages : 217 pages
Book Rating : 4.5/5 (212 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Representation Theory of Compact and Locally Compact Groups by : Alain Robert

Download or read book Introduction to the Representation Theory of Compact and Locally Compact Groups written by Alain Robert and published by Cambridge University Press. This book was released on 1983-02-10 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of their significance in physics and chemistry, representation of Lie groups has been an area of intensive study by physicists and chemists, as well as mathematicians. This introduction is designed for graduate students who have some knowledge of finite groups and general topology, but is otherwise self-contained. The author gives direct and concise proofs of all results yet avoids the heavy machinery of functional analysis. Moreover, representative examples are treated in some detail.

Introduction to Banach Algebras, Operators, and Harmonic Analysis

Download Introduction to Banach Algebras, Operators, and Harmonic Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521535847
Total Pages : 338 pages
Book Rating : 4.5/5 (358 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Banach Algebras, Operators, and Harmonic Analysis by : H. Garth Dales

Download or read book Introduction to Banach Algebras, Operators, and Harmonic Analysis written by H. Garth Dales and published by Cambridge University Press. This book was released on 2003-11-13 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Table of contents

Harmonic and Applied Analysis

Download Harmonic and Applied Analysis PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319188631
Total Pages : 268 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Harmonic and Applied Analysis by : Stephan Dahlke

Download or read book Harmonic and Applied Analysis written by Stephan Dahlke and published by Birkhäuser. This book was released on 2015-09-12 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume explores the connection between the theoretical aspects of harmonic analysis and the construction of advanced multiscale representations that have emerged in signal and image processing. It highlights some of the most promising mathematical developments in harmonic analysis in the last decade brought about by the interplay among different areas of abstract and applied mathematics. This intertwining of ideas is considered starting from the theory of unitary group representations and leading to the construction of very efficient schemes for the analysis of multidimensional data. After an introductory chapter surveying the scientific significance of classical and more advanced multiscale methods, chapters cover such topics as An overview of Lie theory focused on common applications in signal analysis, including the wavelet representation of the affine group, the Schrödinger representation of the Heisenberg group, and the metaplectic representation of the symplectic group An introduction to coorbit theory and how it can be combined with the shearlet transform to establish shearlet coorbit spaces Microlocal properties of the shearlet transform and its ability to provide a precise geometric characterization of edges and interface boundaries in images and other multidimensional data Mathematical techniques to construct optimal data representations for a number of signal types, with a focus on the optimal approximation of functions governed by anisotropic singularities. A unified notation is used across all of the chapters to ensure consistency of the mathematical material presented. Harmonic and Applied Analysis: From Groups to Signals is aimed at graduate students and researchers in the areas of harmonic analysis and applied mathematics, as well as at other applied scientists interested in representations of multidimensional data. It can also be used as a textbook for graduate courses in applied harmonic analysis.​

Harmonic Analysis on the Heisenberg Group

Download Harmonic Analysis on the Heisenberg Group PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461217725
Total Pages : 204 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Harmonic Analysis on the Heisenberg Group by : Sundaram Thangavelu

Download or read book Harmonic Analysis on the Heisenberg Group written by Sundaram Thangavelu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group. Thangavelu’s exposition is clear and well developed, and leads to several problems worthy of further consideration. Any reader who is interested in pursuing research on the Heisenberg group will find this unique and self-contained text invaluable.

Fourier Series and Integrals

Download Fourier Series and Integrals PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 312 pages
Book Rating : 4.:/5 (319 download)

DOWNLOAD NOW!


Book Synopsis Fourier Series and Integrals by : Harry Dym

Download or read book Fourier Series and Integrals written by Harry Dym and published by . This book was released on 1972 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Harmonic Analysis on Spaces of Homogeneous Type

Download Harmonic Analysis on Spaces of Homogeneous Type PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 354088744X
Total Pages : 167 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Harmonic Analysis on Spaces of Homogeneous Type by : Donggao Deng

Download or read book Harmonic Analysis on Spaces of Homogeneous Type written by Donggao Deng and published by Springer Science & Business Media. This book was released on 2008-11-19 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book could have been entitled “Analysis and Geometry.” The authors are addressing the following issue: Is it possible to perform some harmonic analysis on a set? Harmonic analysis on groups has a long tradition. Here we are given a metric set X with a (positive) Borel measure ? and we would like to construct some algorithms which in the classical setting rely on the Fourier transformation. Needless to say, the Fourier transformation does not exist on an arbitrary metric set. This endeavor is not a revolution. It is a continuation of a line of research whichwasinitiated,acenturyago,withtwofundamentalpapersthatIwould like to discuss brie?y. The ?rst paper is the doctoral dissertation of Alfred Haar, which was submitted at to University of Gottingen ̈ in July 1907. At that time it was known that the Fourier series expansion of a continuous function may diverge at a given point. Haar wanted to know if this phenomenon happens for every 2 orthonormal basis of L [0,1]. He answered this question by constructing an orthonormal basis (today known as the Haar basis) with the property that the expansion (in this basis) of any continuous function uniformly converges to that function.

Explorations in Harmonic Analysis

Download Explorations in Harmonic Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817646698
Total Pages : 367 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Explorations in Harmonic Analysis by : Steven G. Krantz

Download or read book Explorations in Harmonic Analysis written by Steven G. Krantz and published by Springer Science & Business Media. This book was released on 2009-05-24 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis.

An Introduction to Harmonic Analysis on Semisimple Lie Groups

Download An Introduction to Harmonic Analysis on Semisimple Lie Groups PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521663625
Total Pages : 326 pages
Book Rating : 4.6/5 (636 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Harmonic Analysis on Semisimple Lie Groups by : V. S. Varadarajan

Download or read book An Introduction to Harmonic Analysis on Semisimple Lie Groups written by V. S. Varadarajan and published by Cambridge University Press. This book was released on 1999-07-22 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in paperback, this graduate-level textbook is an introduction to the representation theory of semi-simple Lie groups. As such, it will be suitable for research students in algebra and analysis, and for research mathematicians requiring a readable account of the topic. The author emphasizes the development of the central themes of the sunject in the context of special examples, without losing sight of its general flow and structure. The book concludes with appendices sketching some basic topics with a comprehensive guide to further reading.

Gaussian Harmonic Analysis

Download Gaussian Harmonic Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030055973
Total Pages : 501 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Harmonic Analysis by : Wilfredo Urbina-Romero

Download or read book Gaussian Harmonic Analysis written by Wilfredo Urbina-Romero and published by Springer. This book was released on 2019-06-21 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by a ranking authority in Gaussian harmonic analysis, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: harmonic analysis and probability. The book is intended for a very diverse audience, from graduate students all the way to researchers working in a broad spectrum of areas in analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of real analysis as well as with classical harmonic analysis, including Calderón-Zygmund theory; also some knowledge of basic orthogonal polynomials theory would be convenient. The monograph develops the main topics of classical harmonic analysis (semigroups, covering lemmas, maximal functions, Littlewood-Paley functions, spectral multipliers, fractional integrals and fractional derivatives, singular integrals) with respect to the Gaussian measure. The text provide an updated exposition, as self-contained as possible, of all the topics in Gaussian harmonic analysis that up to now are mostly scattered in research papers and sections of books; also an exhaustive bibliography for further reading. Each chapter ends with a section of notes and further results where connections between Gaussian harmonic analysis and other connected fields, points of view and alternative techniques are given. Mathematicians and researchers in several areas will find the breadth and depth of the treatment of the subject highly useful.

Variable Lebesgue Spaces

Download Variable Lebesgue Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3034805489
Total Pages : 316 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Variable Lebesgue Spaces by : David V. Cruz-Uribe

Download or read book Variable Lebesgue Spaces written by David V. Cruz-Uribe and published by Springer Science & Business Media. This book was released on 2013-02-12 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.​