Intercomparison of Model Simulations of Mixed-phase Clouds Observed During the ARM Mixed-Phase Arctic Cloud Experiment. Part II

Download Intercomparison of Model Simulations of Mixed-phase Clouds Observed During the ARM Mixed-Phase Arctic Cloud Experiment. Part II PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 65 pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Intercomparison of Model Simulations of Mixed-phase Clouds Observed During the ARM Mixed-Phase Arctic Cloud Experiment. Part II by :

Download or read book Intercomparison of Model Simulations of Mixed-phase Clouds Observed During the ARM Mixed-Phase Arctic Cloud Experiment. Part II written by and published by . This book was released on 2008 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models tend to produce a larger cloud fraction than the single-column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

Intercomparison of Model Simulations of Mixed-phase Clouds Observed During the ARM Mixed-Phase Arctic Cloud Experiment. Part I

Download Intercomparison of Model Simulations of Mixed-phase Clouds Observed During the ARM Mixed-Phase Arctic Cloud Experiment. Part I PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 80 pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Intercomparison of Model Simulations of Mixed-phase Clouds Observed During the ARM Mixed-Phase Arctic Cloud Experiment. Part I by :

Download or read book Intercomparison of Model Simulations of Mixed-phase Clouds Observed During the ARM Mixed-Phase Arctic Cloud Experiment. Part I written by and published by . This book was released on 2008 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m−2 was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m−2. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

Mixed-Phase Clouds

Download Mixed-Phase Clouds PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 012810550X
Total Pages : 302 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Mixed-Phase Clouds by : Constantin Andronache

Download or read book Mixed-Phase Clouds written by Constantin Andronache and published by Elsevier. This book was released on 2017-09-28 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling

Thermodynamics, Kinetics and Microphysics of Clouds

Download Thermodynamics, Kinetics and Microphysics of Clouds PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107016037
Total Pages : 801 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Thermodynamics, Kinetics and Microphysics of Clouds by : Vitaly I. Khvorostyanov

Download or read book Thermodynamics, Kinetics and Microphysics of Clouds written by Vitaly I. Khvorostyanov and published by Cambridge University Press. This book was released on 2014-08-25 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book advances understanding of cloud microphysics and provides a unified theoretical foundation for modeling cloud processes, for researchers and advanced students.

Physical Processes in Clouds and Cloud Modeling

Download Physical Processes in Clouds and Cloud Modeling PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108651550
Total Pages : 643 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Physical Processes in Clouds and Cloud Modeling by : Alexander P. Khain

Download or read book Physical Processes in Clouds and Cloud Modeling written by Alexander P. Khain and published by Cambridge University Press. This book was released on 2018-07-05 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most comprehensive and systematic description currently available of both classical and novel theories of cloud processes, providing a much-needed link between cloud theory, observation, experimental results, and cloud modeling. This volume shows why and how modern models serve as a major tool of investigation of cloud processes responsible for atmospheric phenomena, including climate change. It systematically describes classical as well as recent advancements in cloud physics, including cloud-aerosol interaction; collisions of particles in turbulent clouds; and the formation of multiphase cloud particles. As the first of its kind to serve as a practical guide for using state-of-the-art numerical cloud models, major emphasis is placed on explaining how microphysical processes are treated in modern numerical cloud resolving models. The book will be a valuable resource for advanced students, researchers and numerical model designers in cloud physics, atmospheric science, meteorology, and environmental science.

An Improved Understanding of the Lifecycle of Mixed-phase Stratiform Clouds Through Oberservations and Simulation

Download An Improved Understanding of the Lifecycle of Mixed-phase Stratiform Clouds Through Oberservations and Simulation PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 168 pages
Book Rating : 4.:/5 (891 download)

DOWNLOAD NOW!


Book Synopsis An Improved Understanding of the Lifecycle of Mixed-phase Stratiform Clouds Through Oberservations and Simulation by : Gijs De Boer

Download or read book An Improved Understanding of the Lifecycle of Mixed-phase Stratiform Clouds Through Oberservations and Simulation written by Gijs De Boer and published by . This book was released on 2009 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Arctic mixed-phase clouds : Macro- and microphysical insights with a numerical model

Download Arctic mixed-phase clouds : Macro- and microphysical insights with a numerical model PDF Online Free

Author :
Publisher : KIT Scientific Publishing
ISBN 13 : 3731506866
Total Pages : 174 pages
Book Rating : 4.7/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Arctic mixed-phase clouds : Macro- and microphysical insights with a numerical model by : Loewe, Katharina

Download or read book Arctic mixed-phase clouds : Macro- and microphysical insights with a numerical model written by Loewe, Katharina and published by KIT Scientific Publishing. This book was released on 2017-09-15 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work provides new insights into macro- and microphysical properties of Arctic mixed-phase clouds: first, by comparing semi-idealized large eddy simulations with observations; second, by dissecting the influences of different surface types and boundary layer structures on Arctic mixed- phase clouds; third, by elucidating the dissipation process; and finally by analyzing the main microphysical processes inside Arctic mixed-phase clouds.

Fast Processes in Large-Scale Atmospheric Models

Download Fast Processes in Large-Scale Atmospheric Models PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119528992
Total Pages : 483 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Fast Processes in Large-Scale Atmospheric Models by : Yangang Liu

Download or read book Fast Processes in Large-Scale Atmospheric Models written by Yangang Liu and published by John Wiley & Sons. This book was released on 2023-12-27 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving weather and climate prediction with better representation of fast processes in atmospheric models Many atmospheric processes that influence Earth’s weather and climate occur at spatiotemporal scales that are too small to be resolved in large scale models. They must be parameterized, which means approximately representing them by variables that can be resolved by model grids. Fast Processes in Large Scale Atmospheric Models: Progress, Challenges and Opportunities explores ways to better investigate and represent multiple parameterized processes in models and thus improve their ability to make accurate climate and weather predictions. Volume highlights include: Historical development of the parameterization of fast processes in numerical models Different types of major sub-grid processes and their parameterizations Efforts to unify the treatment of individual processes and their interactions Top-down versus bottom-up approaches across multiple scales Measurement techniques, observational studies, and frameworks for model evaluation Emerging challenges, new opportunities, and future research directions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Current Trends in the Representation of Physical Processes in Weather and Climate Models

Download Current Trends in the Representation of Physical Processes in Weather and Climate Models PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811333963
Total Pages : 372 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Current Trends in the Representation of Physical Processes in Weather and Climate Models by : David A. Randall

Download or read book Current Trends in the Representation of Physical Processes in Weather and Climate Models written by David A. Randall and published by Springer. This book was released on 2019-01-31 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the development of physical parameterization over the last 2 to 3 decades and provides a roadmap for its future development. It covers important physical processes: convection, clouds, radiation, land-surface, and the orographic effect. The improvement of numerical models for predicting weather and climate at a variety of places and times has progressed globally. However, there are still several challenging areas, which need to be addressed with a better understanding of physical processes based on observations, and to subsequently be taken into account by means of improved parameterization. And this is all the more important since models are increasingly being used at higher horizontal and vertical resolutions. Encouraging debate on the cloud-resolving approach or the hybrid approach with parameterized convection and grid-scale cloud microphysics and its impact on models’ intrinsic predictability, the book offers a motivating reference guide for all researchers whose work involves physical parameterization problems and numerical models.

Simulations of Arctic Mixed-phase Clouds in Forecasts with CAM3 and AM2 for M-PACE.

Download Simulations of Arctic Mixed-phase Clouds in Forecasts with CAM3 and AM2 for M-PACE. PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 45 pages
Book Rating : 4.:/5 (958 download)

DOWNLOAD NOW!


Book Synopsis Simulations of Arctic Mixed-phase Clouds in Forecasts with CAM3 and AM2 for M-PACE. by :

Download or read book Simulations of Arctic Mixed-phase Clouds in Forecasts with CAM3 and AM2 for M-PACE. written by and published by . This book was released on 2008 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: [1] Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. Furthermore, this paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.

Climate Change 2013 – The Physical Science Basis

Download Climate Change 2013 – The Physical Science Basis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139917196
Total Pages : 1554 pages
Book Rating : 4.1/5 (399 download)

DOWNLOAD NOW!


Book Synopsis Climate Change 2013 – The Physical Science Basis by : Intergovernmental Panel on Climate Change (IPCC)

Download or read book Climate Change 2013 – The Physical Science Basis written by Intergovernmental Panel on Climate Change (IPCC) and published by Cambridge University Press. This book was released on 2014-03-24 with total page 1554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) will again form the standard scientific reference for all those concerned with climate change and its consequences, including students and researchers in environmental science, meteorology, climatology, biology, ecology and atmospheric chemistry. It provides invaluable material for decision makers and stakeholders at international, national and local level, in government, businesses, and NGOs. This volume provides: • An authoritative and unbiased overview of the physical science basis of climate change • A more extensive assessment of changes observed throughout the climate system than ever before • New dedicated chapters on sea-level change, biogeochemical cycles, clouds and aerosols, and regional climate phenomena • Extensive coverage of model projections, both near-term and long-term climate projections • A detailed assessment of climate change observations, modelling, and attribution for every continent • A new comprehensive atlas of global and regional climate projections for 35 regions of the world

Clouds and Their Climatic Impact

Download Clouds and Their Climatic Impact PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119700310
Total Pages : 371 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Clouds and Their Climatic Impact by : Sylvia Sullivan

Download or read book Clouds and Their Climatic Impact written by Sylvia Sullivan and published by John Wiley & Sons. This book was released on 2023-12-19 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clouds and Their Climatic Impacts Clouds are an influential and complex element of Earth’s climate system. They evolve rapidly in time and exist over small spatial scales, but also affect global radiative balance and large-scale circulations. With more powerful models and extensive observations now at our disposal, the climate impact of clouds is receiving ever more research attention. Clouds and Their Climatic Impacts: Radiation, Circulation, and Precipitation presents an overview of our current understanding on various types of clouds and cloud systems and their multifaceted role in the radiative budget, circulation patterns, and rainfall. Volume highlights include: Interactions of aerosol with both liquid and ice clouds Surface and atmospheric cloud radiative feedbacks and effects Arctic, extratropical, and tropical clouds Cloud-circulation coupling at global, meso, and micro scales Precipitation efficiency, phase, and measurements The role of machine learning in understanding clouds and climate The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Simulating Mixed-phase Arctic Stratus Clouds

Download Simulating Mixed-phase Arctic Stratus Clouds PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Simulating Mixed-phase Arctic Stratus Clouds by :

Download or read book Simulating Mixed-phase Arctic Stratus Clouds written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during October 9th-10th, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-hour simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and subsaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.

Simulating Mixed-phase Arctic Stratus Clouds

Download Simulating Mixed-phase Arctic Stratus Clouds PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Simulating Mixed-phase Arctic Stratus Clouds by :

Download or read book Simulating Mixed-phase Arctic Stratus Clouds written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9th-10th October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and undersaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.

Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations

Download Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations by :

Download or read book Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed-phase stratus clouds are ubiquitous in the Arctic and play an important role in climate in this region. However, climate models have generally proven unsuccessful at simulating the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. An ice nucleation parameterization and a vapor deposition scheme were developed that together provide a physically-consistent treatment of mixed-phase clouds in global climate models. These schemes have been implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model Version 3 (CAM3). This report documents the performance of these schemes against ARM Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the CAM single column model version (SCAM). SCAM with our new schemes has a more realistic simulation of the cloud phase structure and the partitioning of condensed water into liquid droplets against observations during the M-PACE than the standard CAM simulations.

Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds

Download Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds by : M. Shupe

Download or read book Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds written by M. Shupe and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivity of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.

LES Simulations of Roll Clouds Observed During Mixed- Phase Arctic Cloud Experiment

Download LES Simulations of Roll Clouds Observed During Mixed- Phase Arctic Cloud Experiment PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 5 pages
Book Rating : 4.:/5 (685 download)

DOWNLOAD NOW!


Book Synopsis LES Simulations of Roll Clouds Observed During Mixed- Phase Arctic Cloud Experiment by :

Download or read book LES Simulations of Roll Clouds Observed During Mixed- Phase Arctic Cloud Experiment written by and published by . This book was released on 2005 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Roll clouds, and associated roll convection, are fairly common features of the atmospheric boundary layer. While these organized cumuliform clouds are found over many regions of the planet, they are quite ubiquitous near the edge of the polar ice sheets. In particular, during periods of off-ice flow, when cold polar air flows from the ice pack over the relatively warm ocean water, strong boundary layer convection develops along with frequent rolls. According to Bruemmer and Pohlman (2000), most of the total cloud cover in the Arctic is due to roll clouds. In an effort to examine the influences of mixed-phase microphysics on the boundary layer evolution of roll clouds during off-ice flow, Olsson and Harrington (2000) used a 2D mesoscale model coupled to a bulk microphysical scheme (see Section 2). Their results showed that mixed-phase clouds produced more shallow boundary layers with weaker turbulence than liquid-phase cases. Furthermore, their results showed that because of th e reduced turbulent drag on the atmosphere in the mixed-phase case, regions of mesoscale divergence in the marginal ice-zone were significantly affected. A follow-up 2D study (Harrington and Olsson 2001) showed that the reduced turbulent intensity in mixed-phase cases was due to precipitation. Ice precipitation caused downdraft stabilization which fed back and caused a reduction in the surface heat fluxes. In this work, we extend the work of Olsson and Harrington (2000) and Harrington and Olsson (2001) by examining the impacts of ice microphysics on roll convection. We will present results that illustrate how microphysics alters roll cloud structure and dynamics.