Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Intelligent Algorithms For Analysis And Control Of Dynamical Systems
Download Intelligent Algorithms For Analysis And Control Of Dynamical Systems full books in PDF, epub, and Kindle. Read online Intelligent Algorithms For Analysis And Control Of Dynamical Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Intelligent Algorithms for Analysis and Control of Dynamical Systems by : Rajesh Kumar
Download or read book Intelligent Algorithms for Analysis and Control of Dynamical Systems written by Rajesh Kumar and published by Springer Nature. This book was released on 2021 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores various intelligent algorithms including evolutionary algorithms, swarm intelligence-based algorithms for analysis and control of dynamical systems. Both single-input-single-output (SISO) and multi-input-multi-output (MIMO) systems are explored for analysis and control purposes. The applications of intelligent algorithm vary from approximation to optimal control design. The applications of intelligent algorithms not only improve understanding of a dynamical system but also enhance the control efficacy. The intelligent algorithms are now readily applied to all fields of control including linear control, nonlinear control, digital control, optimal control, etc. The book also discusses the main benefits attained due to the application of algorithms to analyze and control
Book Synopsis Statistical Machine Learning by : Richard Golden
Download or read book Statistical Machine Learning written by Richard Golden and published by CRC Press. This book was released on 2020-06-24 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms. Features: Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised, unsupervised, and reinforcement machine learning algorithms Matrix calculus methods for supporting machine learning analysis and design applications Explicit conditions for ensuring convergence of adaptive, batch, minibatch, MCEM, and MCMC learning algorithms that minimize both unimodal and multimodal objective functions Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible. About the Author: Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.
Book Synopsis Intelligent Control by : Nazmul Siddique
Download or read book Intelligent Control written by Nazmul Siddique and published by Springer. This book was released on 2013-11-29 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller. The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of the fuzzy controller is then described and finally an evolutionary algorithm is applied to the neurally-tuned-fuzzy controller in which the sigmoidal function shape of the neural network is determined. The important issue of stability is addressed and the text demonstrates empirically that the developed controller was stable within the operating range. The text concludes with ideas for future research to show the reader the potential for further study in this area. Intelligent Control will be of interest to researchers from engineering and computer science backgrounds working in the intelligent and adaptive control.
Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton
Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Book Synopsis Learning for Adaptive and Reactive Robot Control by : Aude Billard
Download or read book Learning for Adaptive and Reactive Robot Control written by Aude Billard and published by MIT Press. This book was released on 2022-02-08 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.
Book Synopsis Information Technologies and Intelligent Decision Making Systems by : Arthur Gibadullin
Download or read book Information Technologies and Intelligent Decision Making Systems written by Arthur Gibadullin and published by Springer Nature. This book was released on 2023-04-26 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the Second International Conference on Information Technologies and Intelligent Decision Making Systems, ITIDMS 2022, held as a virtual event, December 12–14, 2022. The 14 papers presented in this volume were carefully reviewed and selected from 38 submissions. The conference was held with the aim of developing and exchanging international experience in the field of information, digital and intellectual technologies, within the framework of which proposals were formulated for digital, intellectual and infor-mation transformation, the development of computer models and the improvement of automated and computing processes. A distinctive feature of the conference is that it presented reports of authors from USA, Canada, Bangladesh, Uzbekistan and Russia. Researchers from different countries presented the process of transition of the information and digital path of development, presented the main directions and de-velopments that can improve the efficiency and development.
Book Synopsis Fractional Dynamical Systems: Methods, Algorithms and Applications by : Piotr Kulczycki
Download or read book Fractional Dynamical Systems: Methods, Algorithms and Applications written by Piotr Kulczycki and published by Springer Nature. This book was released on 2022-01-04 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a wide and comprehensive spectrum of issues and problems related to fractional-order dynamical systems. It is meant to be a full-fledge, comprehensive presentation of many aspects related to the broadly perceived fractional-order dynamical systems which constitute an extension of the traditional integer-order-type descriptions. This implies far-reaching consequences, both analytic and algorithmic, because—in general—properties of the traditional integer-order systems cannot be directly extended by a straightforward generalization to fractional-order systems, modeled by fractional-order differential equations involving derivatives of an non-integer order. This can be useful for describing and analyzing, for instance, anomalies in the behavior of various systems, chaotic behavior, etc. The book contains both analytic contributions with state-of-the-art and theoretical foundations, algorithmic implementation of tools and techniques, and—finally—some examples of relevant and successful practical applications.
Book Synopsis Artificial Intelligence Trends in Systems by : Radek Silhavy
Download or read book Artificial Intelligence Trends in Systems written by Radek Silhavy and published by Springer Nature. This book was released on 2022-07-07 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers themes related to artificial intelligence in systems and networks application. Selected papers explore modern neural networks application, optimization and hybrid and bio-inspired algorithms are covered too. The refereed proceedings of the Artificial Intelligence Trends in Systems part of the 11th Computer Science On-line Conference 2022 (CSOC 2022), conducted online in April 2022, are included in this volume.
Book Synopsis Modelling and Control of Dynamical Systems: Numerical Implementation in a Behavioral Framework by : Ricardo Zavala Yoe
Download or read book Modelling and Control of Dynamical Systems: Numerical Implementation in a Behavioral Framework written by Ricardo Zavala Yoe and published by Springer Science & Business Media. This book was released on 2008-05-30 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Behavioral Approach for systems and control deals directly with the solution of the differential equations which represent the system. This book reviews this approach and offers new theoretic results. The programs and algorithms are MATLAB based.
Book Synopsis Neural Networks and Fuzzy Systems by : Bart Kosko
Download or read book Neural Networks and Fuzzy Systems written by Bart Kosko and published by . This book was released on 1992 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by one of the foremost experts in the field of neural networks, this is the first book to combine the theories and applications or neural networks and fuzzy systems. The book is divided into three sections: Neural Network Theory, Neural Network Applications, and Fuzzy Theory and Applications. It describes how neural networks can be used in applications such as: signal and image processing, function estimation, robotics and control, analog VLSI and optical hardware design; and concludes with a presentation of the new geometric theory of fuzzy sets, systems, and associative memories.
Book Synopsis Handbook of Research on Novel Soft Computing Intelligent Algorithms by : Pandian Vasant
Download or read book Handbook of Research on Novel Soft Computing Intelligent Algorithms written by Pandian Vasant and published by IGI Global. This book was released on 2013-08-31 with total page 1173 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book explores emerging technologies and best practices designed to effectively address concerns inherent in properly optimizing advanced systems, demonstrating applications in areas such as bio-engineering, space exploration, industrial informatics, information security, and nuclear and renewable energies"--Provided by publisher.
Author :Johann M.Ph. Schumann Publisher :Springer Science & Business Media ISBN 13 :3642106897 Total Pages :255 pages Book Rating :4.6/5 (421 download)
Book Synopsis Applications of Neural Networks in High Assurance Systems by : Johann M.Ph. Schumann
Download or read book Applications of Neural Networks in High Assurance Systems written by Johann M.Ph. Schumann and published by Springer Science & Business Media. This book was released on 2010-02-28 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Applications of Neural Networks in High Assurance Systems" is the first book directly addressing a key part of neural network technology: methods used to pass the tough verification and validation (V&V) standards required in many safety-critical applications. The book presents what kinds of evaluation methods have been developed across many sectors, and how to pass the tests. A new adaptive structure of V&V is developed in this book, different from the simple six sigma methods usually used for large-scale systems and different from the theorem-based approach used for simplified component subsystems.
Book Synopsis Type-2 Fuzzy Logic in Control of Nonsmooth Systems by : Oscar Castillo
Download or read book Type-2 Fuzzy Logic in Control of Nonsmooth Systems written by Oscar Castillo and published by Springer. This book was released on 2018-11-02 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the synthesis and analysis of fuzzy controllers and its application to a class of mechanical systems. It mainly focuses on the use of type-2 fuzzy controllers to account for disturbances known as hard or nonsmooth nonlinearities. The book, which summarizes the authors’ research on type-2 fuzzy logic and control of mechanical systems, presents models, simulation and experiments towards the control of servomotors with dead-zone and Coulomb friction, and the control of both wheeled mobile robots and a biped robot. Closed-loop systems are analyzed in the framework of smooth and nonsmooth Lyapunov functions.
Book Synopsis Handbook of Research on Artificial Intelligence Techniques and Algorithms by : Vasant, Pandian
Download or read book Handbook of Research on Artificial Intelligence Techniques and Algorithms written by Vasant, Pandian and published by IGI Global. This book was released on 2014-11-30 with total page 913 pages. Available in PDF, EPUB and Kindle. Book excerpt: For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.
Book Synopsis Soft Computing for Control of Non-Linear Dynamical Systems by : Oscar Castillo
Download or read book Soft Computing for Control of Non-Linear Dynamical Systems written by Oscar Castillo and published by Physica. This book was released on 2012-12-06 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified view of modelling, simulation, and control of non linear dynamical systems using soft computing techniques and fractal theory. Our particular point of view is that modelling, simulation, and control are problems that cannot be considered apart, because they are intrinsically related in real world applications. Control of non-linear dynamical systems cannot be achieved if we don't have the appropriate model for the system. On the other hand, we know that complex non-linear dynamical systems can exhibit a wide range of dynamic behaviors ( ranging from simple periodic orbits to chaotic strange attractors), so the problem of simulation and behavior identification is a very important one. Also, we want to automate each of these tasks because in this way it is more easy to solve a particular problem. A real world problem may require that we use modelling, simulation, and control, to achieve the desired level of performance needed for the particular application.
Book Synopsis Artificial Intelligence for Biology and Agriculture by : S. Panigrahi
Download or read book Artificial Intelligence for Biology and Agriculture written by S. Panigrahi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a total of thirteen papers covering a variety of AI topics ranging from computer vision and robotics to intelligent modeling, neural networks and fuzzy logic. There are two general articles on robotics and fuzzy logic. The article on robotics focuses on the application of robotics technology in plant production. The second article on fuzzy logic provides a general overview of the basics of fuzzy logic and a typical agricultural application of fuzzy logic. The article `End effectors for tomato harvesting' enhances further the robotic research as applied to tomato harvesting. The application of computer vision techniques for different biological/agricultural applications, for example, length determination of cheese threads, recognition of plankton images and morphological identification of cotton fibers, depicts the complexity and heterogeneities of the problems and their solutions. The development of a real-time orange grading system in the article `Video grading of oranges in real-time' further reports the capability of computer vision technology to meet the demand of high quality food products. The integration of neural network technology with computer vision and fuzzy logic for defect detection in eggs and identification of lettuce growth shows the power of hybridization of AI technologies to solve agricultural problems. Additional papers also focus on automated modeling of physiological processes during postharvest distribution of agricultural products, the applications of neural networks, fusion of AI technologies and three dimensional computer vision technologies for different problems ranging from botanical identification and cell migration analysis to food microstructure evaluation.
Book Synopsis Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics by : Oscar Castillo
Download or read book Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics written by Oscar Castillo and published by Springer Nature. This book was released on 2023-06-12 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, recent theoretical developments on fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations, are presented. In addition, the above-mentioned methods are presented in application areas such as, intelligent control and robotics, pattern recognition, medical diagnosis, decision-making, time series prediction and optimization of complex problems. The book contains a collection of papers focused on hybrid intelligent systems based on soft computing techniques. There are a group of papers with the main theme of type-1 and type-2 fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on type-1 and type-2 fuzzy logic and their applications. There also a group of papers that offer theoretical concepts and applications of meta-heuristics in different areas. Another group of papers outlines diverse applications of fuzzy logic, neural networks and hybrid intelligent systems in medical problems. There are also some papers that present theory and practice of neural networks in different application areas. In addition, there are papers that offer theory and practice of optimization and evolutionary algorithms in different application areas. Finally, there are a group of papers describing applications of fuzzy logic, neural networks and meta-heuristics in pattern recognition and classification problems.