Collocation Methods for Volterra Integral and Related Functional Differential Equations

Download Collocation Methods for Volterra Integral and Related Functional Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521806152
Total Pages : 620 pages
Book Rating : 4.8/5 (61 download)

DOWNLOAD NOW!


Book Synopsis Collocation Methods for Volterra Integral and Related Functional Differential Equations by : Hermann Brunner

Download or read book Collocation Methods for Volterra Integral and Related Functional Differential Equations written by Hermann Brunner and published by Cambridge University Press. This book was released on 2004-11-15 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.

Functional Integration and Partial Differential Equations. (AM-109), Volume 109

Download Functional Integration and Partial Differential Equations. (AM-109), Volume 109 PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400881595
Total Pages : 557 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Functional Integration and Partial Differential Equations. (AM-109), Volume 109 by : Mark Iosifovich Freidlin

Download or read book Functional Integration and Partial Differential Equations. (AM-109), Volume 109 written by Mark Iosifovich Freidlin and published by Princeton University Press. This book was released on 2016-03-02 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses some aspects of the theory of partial differential equations from the viewpoint of probability theory. It is intended not only for specialists in partial differential equations or probability theory but also for specialists in asymptotic methods and in functional analysis. It is also of interest to physicists who use functional integrals in their research. The work contains results that have not previously appeared in book form, including research contributions of the author.

Techniques of Functional Analysis for Differential and Integral Equations

Download Techniques of Functional Analysis for Differential and Integral Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128114576
Total Pages : 322 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Techniques of Functional Analysis for Differential and Integral Equations by : Paul Sacks

Download or read book Techniques of Functional Analysis for Differential and Integral Equations written by Paul Sacks and published by Academic Press. This book was released on 2017-05-16 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Download Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387709142
Total Pages : 600 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis

Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Singular Differential and Integral Equations with Applications

Download Singular Differential and Integral Equations with Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9781402014574
Total Pages : 428 pages
Book Rating : 4.0/5 (145 download)

DOWNLOAD NOW!


Book Synopsis Singular Differential and Integral Equations with Applications by : R.P. Agarwal

Download or read book Singular Differential and Integral Equations with Applications written by R.P. Agarwal and published by Springer Science & Business Media. This book was released on 2003-07-31 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last century many problems which arose in the science, engineer ing and technology literature involved nonlinear complex phenomena. In many situations these natural phenomena give rise to (i). ordinary differ ential equations which are singular in the independent and/or dependent variables together with initial and boundary conditions, and (ii). Volterra and Fredholm type integral equations. As one might expect general exis tence results were difficult to establish for the problems which arose. Indeed until the early 1990's only very special examples were examined and these examples were usually tackled using some special device, which was usually only applicable to the particular problem under investigation. However in the 1990's new results in inequality and fixed point theory were used to present a very general existence theory for singular problems. This mono graph presents an up to date account of the literature on singular problems. One of our aims also is to present recent theory on singular differential and integral equations to a new and wider audience. The book presents a compact, thorough, and self-contained account for singular problems. An important feature of this book is that we illustrate how easily the theory can be applied to discuss many real world examples of current interest. In Chapter 1 we study differential equations which are singular in the independent variable. We begin with some standard notation in Section 1. 2 and introduce LP-Caratheodory functions. Some fixed point theorems, the Arzela- Ascoli theorem and Banach's theorem are also stated here.

Handbook of Integral Equations

Download Handbook of Integral Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0203881052
Total Pages : 1143 pages
Book Rating : 4.2/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Integral Equations by : Andrei D. Polyanin

Download or read book Handbook of Integral Equations written by Andrei D. Polyanin and published by CRC Press. This book was released on 2008-02-12 with total page 1143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa

Oscillation Theory for Difference and Functional Differential Equations

Download Oscillation Theory for Difference and Functional Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401594015
Total Pages : 344 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Oscillation Theory for Difference and Functional Differential Equations by : R.P. Agarwal

Download or read book Oscillation Theory for Difference and Functional Differential Equations written by R.P. Agarwal and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, (!, R, ~)-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved.

Introduction to Nonlinear Differential and Integral Equations

Download Introduction to Nonlinear Differential and Integral Equations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 590 pages
Book Rating : 4.:/5 (319 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Nonlinear Differential and Integral Equations by : Harold Thayer Davis

Download or read book Introduction to Nonlinear Differential and Integral Equations written by Harold Thayer Davis and published by . This book was released on 1960 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Volterra Integral and Functional Equations

Download Volterra Integral and Functional Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521372895
Total Pages : 727 pages
Book Rating : 4.5/5 (213 download)

DOWNLOAD NOW!


Book Synopsis Volterra Integral and Functional Equations by : G. Gripenberg

Download or read book Volterra Integral and Functional Equations written by G. Gripenberg and published by Cambridge University Press. This book was released on 1990 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book looks at the theories of Volterra integral and functional equations.

Integral and Functional Differential Equations

Download Integral and Functional Differential Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780824713546
Total Pages : 298 pages
Book Rating : 4.7/5 (135 download)

DOWNLOAD NOW!


Book Synopsis Integral and Functional Differential Equations by : Harlan W. Stech

Download or read book Integral and Functional Differential Equations written by Harlan W. Stech and published by CRC Press. This book was released on 1981-05-01 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Integral Theorems for Functions and Differential Forms in C(m)

Download Integral Theorems for Functions and Differential Forms in C(m) PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420035517
Total Pages : 217 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Integral Theorems for Functions and Differential Forms in C(m) by : Reynaldo Rocha-Chavez

Download or read book Integral Theorems for Functions and Differential Forms in C(m) written by Reynaldo Rocha-Chavez and published by CRC Press. This book was released on 2001-08-03 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of holomorphic functions of several complex variables emerged from the attempt to generalize the theory in one variable to the multidimensional situation. Research in this area has led to the discovery of many sophisticated facts, structures, ideas, relations, and applications. This deepening of knowledge, however, has also revealed more

Asymptotic Integration of Differential and Difference Equations

Download Asymptotic Integration of Differential and Difference Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331918248X
Total Pages : 411 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Asymptotic Integration of Differential and Difference Equations by : Sigrun Bodine

Download or read book Asymptotic Integration of Differential and Difference Equations written by Sigrun Bodine and published by Springer. This book was released on 2015-05-26 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers in asymptotic integration as well to non-experts who are interested in the asymptotic analysis of linear differential and difference equations. It will additionally be of interest to students in mathematics, applied sciences, and engineering. Linear algebra and some basic concepts from advanced calculus are prerequisites.

Special Functions and Analysis of Differential Equations

Download Special Functions and Analysis of Differential Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000078582
Total Pages : 405 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis Special Functions and Analysis of Differential Equations by : Praveen Agarwal

Download or read book Special Functions and Analysis of Differential Equations written by Praveen Agarwal and published by CRC Press. This book was released on 2020-09-08 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.

Bifurcation Theory of Functional Differential Equations

Download Bifurcation Theory of Functional Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461469929
Total Pages : 295 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Bifurcation Theory of Functional Differential Equations by : Shangjiang Guo

Download or read book Bifurcation Theory of Functional Differential Equations written by Shangjiang Guo and published by Springer Science & Business Media. This book was released on 2013-07-30 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540344594
Total Pages : 453 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Friedrich Sauvigny

Download or read book Partial Differential Equations written by Friedrich Sauvigny and published by Springer Science & Business Media. This book was released on 2006-10-04 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive two-volume textbook covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Special emphasis is placed on the connection of PDEs and complex variable methods. In this first volume the following topics are treated: Integration and differentiation on manifolds, Functional analytic foundations, Brouwer's degree of mapping, Generalized analytic functions, Potential theory and spherical harmonics, Linear partial differential equations. We solve partial differential equations via integral representations in this volume, reserving functional analytic solution methods for Volume Two.

Generalized Ordinary Differential Equations in Abstract Spaces and Applications

Download Generalized Ordinary Differential Equations in Abstract Spaces and Applications PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119654939
Total Pages : 514 pages
Book Rating : 4.1/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Generalized Ordinary Differential Equations in Abstract Spaces and Applications by : Everaldo M. Bonotto

Download or read book Generalized Ordinary Differential Equations in Abstract Spaces and Applications written by Everaldo M. Bonotto and published by John Wiley & Sons. This book was released on 2021-09-15 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and App­lications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.

Singular Integral Equations

Download Singular Integral Equations PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486145069
Total Pages : 466 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Singular Integral Equations by : N. I. Muskhelishvili

Download or read book Singular Integral Equations written by N. I. Muskhelishvili and published by Courier Corporation. This book was released on 2013-02-19 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div